scispace - formally typeset
Search or ask a question
Journal ArticleDOI

The organization of the human cerebral cortex estimated by intrinsic functional connectivity

TL;DR: In this paper, the organization of networks in the human cerebrum was explored using resting-state functional connectivity MRI data from 1,000 subjects and a clustering approach was employed to identify and replicate networks of functionally coupled regions across the cerebral cortex.
Abstract: Information processing in the cerebral cortex involves interactions among distributed areas. Anatomical connectivity suggests that certain areas form local hierarchical relations such as within the visual system. Other connectivity patterns, particularly among association areas, suggest the presence of large-scale circuits without clear hierarchical relations. In this study the organization of networks in the human cerebrum was explored using resting-state functional connectivity MRI. Data from 1,000 subjects were registered using surface-based alignment. A clustering approach was employed to identify and replicate networks of functionally coupled regions across the cerebral cortex. The results revealed local networks confined to sensory and motor cortices as well as distributed networks of association regions. Within the sensory and motor cortices, functional connectivity followed topographic representations across adjacent areas. In association cortex, the connectivity patterns often showed abrupt transitions between network boundaries. Focused analyses were performed to better understand properties of network connectivity. A canonical sensory-motor pathway involving primary visual area, putative middle temporal area complex (MT+), lateral intraparietal area, and frontal eye field was analyzed to explore how interactions might arise within and between networks. Results showed that adjacent regions of the MT+ complex demonstrate differential connectivity consistent with a hierarchical pathway that spans networks. The functional connectivity of parietal and prefrontal association cortices was next explored. Distinct connectivity profiles of neighboring regions suggest they participate in distributed networks that, while showing evidence for interactions, are embedded within largely parallel, interdigitated circuits. We conclude by discussing the organization of these large-scale cerebral networks in relation to monkey anatomy and their potential evolutionary expansion in humans to support cognition.
Citations
More filters
Journal ArticleDOI
TL;DR: Progress made during the first half of the Human Connectome Project project in refining the methods for data acquisition and analysis provides grounds for optimism that the HCP datasets and associated methods and software will become increasingly valuable resources for characterizing human brain connectivity and function, their relationship to behavior, and their heritability and genetic underpinnings.

4,388 citations

Journal ArticleDOI
17 Nov 2011-Neuron
TL;DR: In this article, the authors studied functional brain organization in healthy adults using resting state functional connectivity MRI and proposed two novel brain wide graphs, one of 264 putative functional areas, the other a modification of voxelwise networks that eliminates potentially artificial short-distance relationships.

3,517 citations

Journal ArticleDOI
11 Aug 2016-Nature
TL;DR: Using multi-modal magnetic resonance images from the Human Connectome Project and an objective semi-automated neuroanatomical approach, 180 areas per hemisphere are delineated bounded by sharp changes in cortical architecture, function, connectivity, and/or topography in a precisely aligned group average of 210 healthy young adults.
Abstract: Understanding the amazingly complex human cerebral cortex requires a map (or parcellation) of its major subdivisions, known as cortical areas. Making an accurate areal map has been a century-old objective in neuroscience. Using multi-modal magnetic resonance images from the Human Connectome Project (HCP) and an objective semi-automated neuroanatomical approach, we delineated 180 areas per hemisphere bounded by sharp changes in cortical architecture, function, connectivity, and/or topography in a precisely aligned group average of 210 healthy young adults. We characterized 97 new areas and 83 areas previously reported using post-mortem microscopy or other specialized study-specific approaches. To enable automated delineation and identification of these areas in new HCP subjects and in future studies, we trained a machine-learning classifier to recognize the multi-modal 'fingerprint' of each cortical area. This classifier detected the presence of 96.6% of the cortical areas in new subjects, replicated the group parcellation, and could correctly locate areas in individuals with atypical parcellations. The freely available parcellation and classifier will enable substantially improved neuroanatomical precision for studies of the structural and functional organization of human cerebral cortex and its variation across individuals and in development, aging, and disease.

3,414 citations

Journal ArticleDOI
TL;DR: It is found that motion-induced signal changes are often complex and variable waveforms, often shared across nearly all brain voxels, and often persist more than 10s after motion ceases, which increase observed RSFC correlations in a distance-dependent manner.

2,713 citations

References
More filters
Journal ArticleDOI
TL;DR: The present findings suggest a new conceptualization of corticostriatal topography in the primate which emphasizes the longitudinal arrangement of cortical terminal domains, and provide a map for functional parcellation of the neostriatum on the basis of its cortical innervation.
Abstract: Anterograde tracing methods were used to examine the topographic organization and interrelationship of projections to the neostriatum arising from various areas of association cortex. In contrast to the currently accepted topographic schema, all cortical areas examined project to longitudinal territories that occupy restricted medial-lateral domains of the neostriatum. The posterior parietal and superior arcuate cortices project to dorsolateral portions of the neostriatum; the dorsolateral and dorsomedial frontal cortices project centrally; and the orbitofrontal, anterior cingulate, and superior temporal projections are distributed to ventromedial regions of the caudate nucleus and putamen. In coronal section, cortical terminal fields form a diagonal strip, extending from the dorsal, ventricular border of the caudate nucleus, through the fiber bundles of the internal capsule, to the ventral margin of the putamen. Double labeling studies, in which two cortical areas were injected in the same animal, indicated that convergence of input within neostriatal domains is not governed by reciprocity of corticocortical connectivity. Thus, the interrelationship of projections arising from connectionally linked cortical areas ranged from nearly complete segregation of terminal fields (e.g., from dorsolateral prefrontal and orbital cortices) to extensive overlap of terminal domains (e.g., from frontal and temporal cortices). In the latter case, detailed analysis revealed that frontal and temporal terminals actually were interdigitated rather than intermixed within the zone of overlap. The present findings suggest a new conceptualization of corticostriatal topography in the primate which emphasizes the longitudinal arrangement of cortical terminal domains. Additionally, these findings provide a map for functional parcellation of the neostriatum on the basis of its cortical innervation which may prove useful to understanding normal striatal function, as well as the symptomatology associated with neostriatal injury and disease.

1,085 citations

Journal ArticleDOI
TL;DR: A new electronic atlas of human cerebral cortex that provides a substrate for a wide variety of brain-mapping analyses and a population-average surface representation that circumvents the biases inherent in choosing any single hemisphere as a target is described.

1,082 citations

Journal ArticleDOI
TL;DR: Recent findings and methods employed to uncover the functional properties of the human visual cortex focusing on two themes: functional specialization and hierarchical processing are reviewed.
Abstract: The discovery and analysis of cortical visual areas is a major accomplishment of visual neuroscience. In the past decade the use of noninvasive functional imaging, particularly functional magnetic resonance imaging (fMRI), has dramatically increased our detailed knowledge of the functional organization of the human visual cortex and its relation to visual perception. The fMRI method offers a major advantage over other techniques applied in neuroscience by providing a large-scale neuroanatomical perspective that stems from its ability to image the entire brain essentially at once. This bird's eye view has the potential to reveal large-scale principles within the very complex plethora of visual areas. Thus, it could arrange the entire constellation of human visual areas in a unified functional organizational framework. Here we review recent findings and methods employed to uncover the functional properties of the human visual cortex focusing on two themes: functional specialization and hierarchical processing.

1,075 citations

Journal ArticleDOI
TL;DR: Diedrichsen et al. as discussed by the authors presented a probabilistic atlas of the cerebellar lobules in the anatomical space defined by the MNI152 template, which can be used to define regions of interest (ROIs) in functional neuroimaging and neuroanatomical research.

1,065 citations

Book
01 Jan 1947

1,060 citations