scispace - formally typeset
Search or ask a question
Journal Article•DOI•

The organization of the human cerebral cortex estimated by intrinsic functional connectivity

TL;DR: In this paper, the organization of networks in the human cerebrum was explored using resting-state functional connectivity MRI data from 1,000 subjects and a clustering approach was employed to identify and replicate networks of functionally coupled regions across the cerebral cortex.
Abstract: Information processing in the cerebral cortex involves interactions among distributed areas. Anatomical connectivity suggests that certain areas form local hierarchical relations such as within the visual system. Other connectivity patterns, particularly among association areas, suggest the presence of large-scale circuits without clear hierarchical relations. In this study the organization of networks in the human cerebrum was explored using resting-state functional connectivity MRI. Data from 1,000 subjects were registered using surface-based alignment. A clustering approach was employed to identify and replicate networks of functionally coupled regions across the cerebral cortex. The results revealed local networks confined to sensory and motor cortices as well as distributed networks of association regions. Within the sensory and motor cortices, functional connectivity followed topographic representations across adjacent areas. In association cortex, the connectivity patterns often showed abrupt transitions between network boundaries. Focused analyses were performed to better understand properties of network connectivity. A canonical sensory-motor pathway involving primary visual area, putative middle temporal area complex (MT+), lateral intraparietal area, and frontal eye field was analyzed to explore how interactions might arise within and between networks. Results showed that adjacent regions of the MT+ complex demonstrate differential connectivity consistent with a hierarchical pathway that spans networks. The functional connectivity of parietal and prefrontal association cortices was next explored. Distinct connectivity profiles of neighboring regions suggest they participate in distributed networks that, while showing evidence for interactions, are embedded within largely parallel, interdigitated circuits. We conclude by discussing the organization of these large-scale cerebral networks in relation to monkey anatomy and their potential evolutionary expansion in humans to support cognition.
Citations
More filters
Journal Article•DOI•
TL;DR: Progress made during the first half of the Human Connectome Project project in refining the methods for data acquisition and analysis provides grounds for optimism that the HCP datasets and associated methods and software will become increasingly valuable resources for characterizing human brain connectivity and function, their relationship to behavior, and their heritability and genetic underpinnings.

4,388 citations

Journal Article•DOI•
17 Nov 2011-Neuron
TL;DR: In this article, the authors studied functional brain organization in healthy adults using resting state functional connectivity MRI and proposed two novel brain wide graphs, one of 264 putative functional areas, the other a modification of voxelwise networks that eliminates potentially artificial short-distance relationships.

3,517 citations

Journal Article•DOI•
11 Aug 2016-Nature
TL;DR: Using multi-modal magnetic resonance images from the Human Connectome Project and an objective semi-automated neuroanatomical approach, 180 areas per hemisphere are delineated bounded by sharp changes in cortical architecture, function, connectivity, and/or topography in a precisely aligned group average of 210 healthy young adults.
Abstract: Understanding the amazingly complex human cerebral cortex requires a map (or parcellation) of its major subdivisions, known as cortical areas. Making an accurate areal map has been a century-old objective in neuroscience. Using multi-modal magnetic resonance images from the Human Connectome Project (HCP) and an objective semi-automated neuroanatomical approach, we delineated 180 areas per hemisphere bounded by sharp changes in cortical architecture, function, connectivity, and/or topography in a precisely aligned group average of 210 healthy young adults. We characterized 97 new areas and 83 areas previously reported using post-mortem microscopy or other specialized study-specific approaches. To enable automated delineation and identification of these areas in new HCP subjects and in future studies, we trained a machine-learning classifier to recognize the multi-modal 'fingerprint' of each cortical area. This classifier detected the presence of 96.6% of the cortical areas in new subjects, replicated the group parcellation, and could correctly locate areas in individuals with atypical parcellations. The freely available parcellation and classifier will enable substantially improved neuroanatomical precision for studies of the structural and functional organization of human cerebral cortex and its variation across individuals and in development, aging, and disease.

3,414 citations

Journal Article•DOI•
TL;DR: It is found that motion-induced signal changes are often complex and variable waveforms, often shared across nearly all brain voxels, and often persist more than 10s after motion ceases, which increase observed RSFC correlations in a distance-dependent manner.

2,713 citations

References
More filters
Journal Article•DOI•
TL;DR: Findings suggest that human and simian cortical organization may begin to differ in extrastriate cortex at, or beyond, V3A and V4 of the macaque monkey.
Abstract: Functional magnetic resonance imaging (fMRI) was used to identify and map the representation of the visual field in seven areas of human cerebral cortex and to identify at least two additional visually responsive regions. The cortical locations of neurons responding to stimulation along the vertical or horizontal visual field meridia were charted on three-dimensional models of the cortex and on unfolded maps of the cortical surface. These maps were used to identify the borders among areas that would be topographically homologous to areas V1, V2, V3, VP, and parts of V3A and V4 of the macaque monkey. Visually responsive areas homologous to the middle temporal/medial superior temporal area complex and unidentified parietal visual areas were also observed. The topography of the visual areas identified thus far is consistent with the organization in macaque monkeys. However, these and other findings suggest that human and simian cortical organization may begin to differ in extrastriate cortex at, or beyond, V3A and V4.

1,054 citations

Journal Article•DOI•
TL;DR: This work provides a comprehensive functional connectivity analysis of basal ganglia circuitry in humans through a functional magnetic resonance imaging examination during rest and revealed subtler distinctions within striatal subregions not previously appreciated by task-based imaging approaches.
Abstract: Classically regarded as motor structures, the basal ganglia subserve a wide range of functions, including motor, cognitive, motivational, and emotional processes. Consistent with this broad-reaching involvement in brain function, basal ganglia dysfunction has been implicated in numerous neurological and psychiatric disorders. Despite recent advances in human neuroimaging, models of basal ganglia circuitry continue to rely primarily upon inference from animal studies. Here, we provide a comprehensive functional connectivity analysis of basal ganglia circuitry in humans through a functional magnetic resonance imaging examination during rest. Voxelwise regression analyses substantiated the hypothesized motor, cognitive, and affective divisions among striatal subregions, and provided in vivo evidence of a functional organization consistent with parallel and integrative loop models described in animals. Our findings also revealed subtler distinctions within striatal subregions not previously appreciated by task-based imaging approaches. For instance, the inferior ventral striatum is functionally connected with medial portions of orbitofrontal cortex, whereas a more superior ventral striatal seed is associated with medial and lateral portions. The ability to map multiple distinct striatal circuits in a single study in humans, as opposed to relying on meta-analyses of multiple studies, is a principal strength of resting state functional magnetic resonance imaging. This approach holds promise for studying basal ganglia dysfunction in clinical disorders.

1,010 citations

Journal Article•DOI•
TL;DR: Knowlton BJ, Mangels JA, Squire LR, and Graybiel AM as discussed by the authors showed that activation of a basal ganglia-forebrain circuit prevents plasticity of learned vocalizations.

1,005 citations

Journal Article•DOI•
16 Jun 1994-Nature

995 citations

Journal Article•DOI•
TL;DR: The present analysis showed that only a restricted portion of what had previously been labelled as area 46 in the monkey has the same characteristics as area46 of the human brain; the remaining part of this monkey region has the characteristics of a portion of the middle frontal gyrus in the humanbrain that had previously be included as part of area 9.
Abstract: The cytoarchitecture of the human and the macaque monkey dorsolateral prefrontal cortex has been examined in a strictly comparative manner in order to resolve major discrepancies between the available segmentations of this cortical region in the human and the monkey brain. In addition, the connections of the dorsolateral prefrontal cortical areas were re-examined in the monkey. The present analysis showed that only a restricted portion of what had previously been labelled as area 46 in the monkey has the same characteristics as area 46 of the human brain; the remaining part of this monkey region has the characteristics of a portion of the middle frontal gyrus in the human brain that had previously been included as part of area 9. We have labelled this cortical area as 9/46 in both species. These two areas (i.e. 46 and 9/46), which constitute the lower half of the mid-dorsolateral frontal cortex, have a well-developed granular layer IV, and can easily be distinguished from area 9, on the upper part of the mid-dorsolateral region, which does not have a well-developed granular layer IV. Area 9 has the same basic pattern of connections as areas 46 and 9/46, but, unlike the latter areas, it does not receive input from the lateral parietal cortex. Caudal to area 9, on the dorsomedial portion of the frontal cortex, there is a distinct strip of cortex (area 8B) which, unlike area 9, receives significant input from the prestriate cortex and the medial parietal cortex. The present results provide a basis for a closer integration of findings from functional neuroimaging studies in human subjects with experimental work in the monkey.

993 citations