scispace - formally typeset
Search or ask a question
Journal ArticleDOI

The organization of the human cerebral cortex estimated by intrinsic functional connectivity

TL;DR: In this paper, the organization of networks in the human cerebrum was explored using resting-state functional connectivity MRI data from 1,000 subjects and a clustering approach was employed to identify and replicate networks of functionally coupled regions across the cerebral cortex.
Abstract: Information processing in the cerebral cortex involves interactions among distributed areas. Anatomical connectivity suggests that certain areas form local hierarchical relations such as within the visual system. Other connectivity patterns, particularly among association areas, suggest the presence of large-scale circuits without clear hierarchical relations. In this study the organization of networks in the human cerebrum was explored using resting-state functional connectivity MRI. Data from 1,000 subjects were registered using surface-based alignment. A clustering approach was employed to identify and replicate networks of functionally coupled regions across the cerebral cortex. The results revealed local networks confined to sensory and motor cortices as well as distributed networks of association regions. Within the sensory and motor cortices, functional connectivity followed topographic representations across adjacent areas. In association cortex, the connectivity patterns often showed abrupt transitions between network boundaries. Focused analyses were performed to better understand properties of network connectivity. A canonical sensory-motor pathway involving primary visual area, putative middle temporal area complex (MT+), lateral intraparietal area, and frontal eye field was analyzed to explore how interactions might arise within and between networks. Results showed that adjacent regions of the MT+ complex demonstrate differential connectivity consistent with a hierarchical pathway that spans networks. The functional connectivity of parietal and prefrontal association cortices was next explored. Distinct connectivity profiles of neighboring regions suggest they participate in distributed networks that, while showing evidence for interactions, are embedded within largely parallel, interdigitated circuits. We conclude by discussing the organization of these large-scale cerebral networks in relation to monkey anatomy and their potential evolutionary expansion in humans to support cognition.
Citations
More filters
Journal ArticleDOI
TL;DR: Progress made during the first half of the Human Connectome Project project in refining the methods for data acquisition and analysis provides grounds for optimism that the HCP datasets and associated methods and software will become increasingly valuable resources for characterizing human brain connectivity and function, their relationship to behavior, and their heritability and genetic underpinnings.

4,388 citations

Journal ArticleDOI
17 Nov 2011-Neuron
TL;DR: In this article, the authors studied functional brain organization in healthy adults using resting state functional connectivity MRI and proposed two novel brain wide graphs, one of 264 putative functional areas, the other a modification of voxelwise networks that eliminates potentially artificial short-distance relationships.

3,517 citations

Journal ArticleDOI
11 Aug 2016-Nature
TL;DR: Using multi-modal magnetic resonance images from the Human Connectome Project and an objective semi-automated neuroanatomical approach, 180 areas per hemisphere are delineated bounded by sharp changes in cortical architecture, function, connectivity, and/or topography in a precisely aligned group average of 210 healthy young adults.
Abstract: Understanding the amazingly complex human cerebral cortex requires a map (or parcellation) of its major subdivisions, known as cortical areas. Making an accurate areal map has been a century-old objective in neuroscience. Using multi-modal magnetic resonance images from the Human Connectome Project (HCP) and an objective semi-automated neuroanatomical approach, we delineated 180 areas per hemisphere bounded by sharp changes in cortical architecture, function, connectivity, and/or topography in a precisely aligned group average of 210 healthy young adults. We characterized 97 new areas and 83 areas previously reported using post-mortem microscopy or other specialized study-specific approaches. To enable automated delineation and identification of these areas in new HCP subjects and in future studies, we trained a machine-learning classifier to recognize the multi-modal 'fingerprint' of each cortical area. This classifier detected the presence of 96.6% of the cortical areas in new subjects, replicated the group parcellation, and could correctly locate areas in individuals with atypical parcellations. The freely available parcellation and classifier will enable substantially improved neuroanatomical precision for studies of the structural and functional organization of human cerebral cortex and its variation across individuals and in development, aging, and disease.

3,414 citations

Journal ArticleDOI
TL;DR: It is found that motion-induced signal changes are often complex and variable waveforms, often shared across nearly all brain voxels, and often persist more than 10s after motion ceases, which increase observed RSFC correlations in a distance-dependent manner.

2,713 citations

References
More filters
Journal ArticleDOI
01 Oct 2005-Brain
TL;DR: The changing fortunes of disconnection theory is described, on the 40th anniversary of Geschwind's publication, and the general framework that evolved from it is adapted to encompass the entire spectrum of higher function disorders in neurology and psychiatry.
Abstract: In a brain composed of localized but connected specialized areas, disconnection leads to dysfunction. This simple formulation underlay a range of 19th century neurological disorders, referred to collectively as disconnection syndromes. Although disconnectionism fell out of favour with the move against localized brain theories in the early 20th century, in 1965, an American neurologist brought disconnection to the fore once more in a paper entitled, 'Disconnexion syndromes in animals and man'. In what was to become the manifesto of behavioural neurology, Norman Geschwind outlined a pure disconnectionist framework which revolutionized both clinical neurology and the neurosciences in general. For him, disconnection syndromes were higher function deficits that resulted from white matter lesions or lesions of the association cortices, the latter acting as relay stations between primary motor, sensory and limbic areas. From a clinical perspective, the work reawakened interest in single case studies by providing a useful framework for correlating lesion locations with clinical deficits. In the neurosciences, it helped develop contemporary distributed network and connectionist theories of brain function. Geschwind's general disconnectionist paradigm ruled clinical neurology for 20 years but in the late 1980s, with the re-emergence of specialized functional roles for association cortex, the orbit of its remit began to diminish and it became incorporated into more general models of higher dysfunction. By the 1990s, textbooks of neurology were devoting only a few pages to classical disconnection theory. Today, new techniques to study connections in the living human brain allow us, for the first time, to test the classical formulation directly and broaden it beyond disconnections to include disorders of hyperconnectivity. In this review, on the 40th anniversary of Geschwind's publication, we describe the changing fortunes of disconnection theory and adapt the general framework that evolved from it to encompass the entire spectrum of higher function disorders in neurology and psychiatry.

779 citations

Journal ArticleDOI
TL;DR: There appears to be a complex series of areas of the brain implicated in the pathophysiology of depression although limited overlap was found across imaging paradigms.
Abstract: Objective A large number of studies with considerably variable methods have been performed to investigate brain regions involved in the pathophysiology of major depressive disorder. The aim of this study was to use a quantitative meta-analytic technique to synthesise the results of much of this research.

777 citations

Journal ArticleDOI
H. Künzle1
TL;DR: By tracing radioactively labeled proteins transported by axonal flow, projections from area 4 to the ipsi- and contralateral neostriatum and claustrum were demonstrated in 7 monkeys, suggesting differential functions for the two striatal components in sensorimotor mechanisms.

768 citations

Journal ArticleDOI
TL;DR: The results indicate that the functional and structural properties of the visual system are very closely and similarly related across the whole retina.
Abstract: Comparisons of the published data on the density D of receptive fields of retinal ganglion cells and on the cortical magnification factor M indicated that M2 is directly proportional to D in primates. Therefore, the human M can be estimated for the principal meridians of the visual field from the density-distribution of retinal ganglion cells and from the density of the centralmost cones. Using the previously published empirical data, we estimated the values of the human M and express the values in four simple equations that can be used for finding the value of M for any location of the visual field. The monocular values of M are not radially symmetric.

767 citations

Journal ArticleDOI
TL;DR: Functional neuroimaging has proven highly valuable in mapping human sensory regions, particularly visual areas in occipital cortex, but the extension of human brain mapping into higher-order "association cortex" may prove to be a challenge.

756 citations