scispace - formally typeset
Search or ask a question
Journal ArticleDOI

The organization of the human cerebral cortex estimated by intrinsic functional connectivity

TL;DR: In this paper, the organization of networks in the human cerebrum was explored using resting-state functional connectivity MRI data from 1,000 subjects and a clustering approach was employed to identify and replicate networks of functionally coupled regions across the cerebral cortex.
Abstract: Information processing in the cerebral cortex involves interactions among distributed areas. Anatomical connectivity suggests that certain areas form local hierarchical relations such as within the visual system. Other connectivity patterns, particularly among association areas, suggest the presence of large-scale circuits without clear hierarchical relations. In this study the organization of networks in the human cerebrum was explored using resting-state functional connectivity MRI. Data from 1,000 subjects were registered using surface-based alignment. A clustering approach was employed to identify and replicate networks of functionally coupled regions across the cerebral cortex. The results revealed local networks confined to sensory and motor cortices as well as distributed networks of association regions. Within the sensory and motor cortices, functional connectivity followed topographic representations across adjacent areas. In association cortex, the connectivity patterns often showed abrupt transitions between network boundaries. Focused analyses were performed to better understand properties of network connectivity. A canonical sensory-motor pathway involving primary visual area, putative middle temporal area complex (MT+), lateral intraparietal area, and frontal eye field was analyzed to explore how interactions might arise within and between networks. Results showed that adjacent regions of the MT+ complex demonstrate differential connectivity consistent with a hierarchical pathway that spans networks. The functional connectivity of parietal and prefrontal association cortices was next explored. Distinct connectivity profiles of neighboring regions suggest they participate in distributed networks that, while showing evidence for interactions, are embedded within largely parallel, interdigitated circuits. We conclude by discussing the organization of these large-scale cerebral networks in relation to monkey anatomy and their potential evolutionary expansion in humans to support cognition.
Citations
More filters
Journal ArticleDOI
TL;DR: Progress made during the first half of the Human Connectome Project project in refining the methods for data acquisition and analysis provides grounds for optimism that the HCP datasets and associated methods and software will become increasingly valuable resources for characterizing human brain connectivity and function, their relationship to behavior, and their heritability and genetic underpinnings.

4,388 citations

Journal ArticleDOI
17 Nov 2011-Neuron
TL;DR: In this article, the authors studied functional brain organization in healthy adults using resting state functional connectivity MRI and proposed two novel brain wide graphs, one of 264 putative functional areas, the other a modification of voxelwise networks that eliminates potentially artificial short-distance relationships.

3,517 citations

Journal ArticleDOI
11 Aug 2016-Nature
TL;DR: Using multi-modal magnetic resonance images from the Human Connectome Project and an objective semi-automated neuroanatomical approach, 180 areas per hemisphere are delineated bounded by sharp changes in cortical architecture, function, connectivity, and/or topography in a precisely aligned group average of 210 healthy young adults.
Abstract: Understanding the amazingly complex human cerebral cortex requires a map (or parcellation) of its major subdivisions, known as cortical areas. Making an accurate areal map has been a century-old objective in neuroscience. Using multi-modal magnetic resonance images from the Human Connectome Project (HCP) and an objective semi-automated neuroanatomical approach, we delineated 180 areas per hemisphere bounded by sharp changes in cortical architecture, function, connectivity, and/or topography in a precisely aligned group average of 210 healthy young adults. We characterized 97 new areas and 83 areas previously reported using post-mortem microscopy or other specialized study-specific approaches. To enable automated delineation and identification of these areas in new HCP subjects and in future studies, we trained a machine-learning classifier to recognize the multi-modal 'fingerprint' of each cortical area. This classifier detected the presence of 96.6% of the cortical areas in new subjects, replicated the group parcellation, and could correctly locate areas in individuals with atypical parcellations. The freely available parcellation and classifier will enable substantially improved neuroanatomical precision for studies of the structural and functional organization of human cerebral cortex and its variation across individuals and in development, aging, and disease.

3,414 citations

Journal ArticleDOI
TL;DR: It is found that motion-induced signal changes are often complex and variable waveforms, often shared across nearly all brain voxels, and often persist more than 10s after motion ceases, which increase observed RSFC correlations in a distance-dependent manner.

2,713 citations

References
More filters
Journal ArticleDOI
TL;DR: The present results indicate that the corticostriatal and corticosubthalamic input zones from the pre-SMA appear to be segregated from the SMA-derived input zones, which implies the possibility of parallel processing of motor information from the before and after SMA and SMA in the cortico-basal ganglia circuit.

219 citations

Journal ArticleDOI
TL;DR: The extent to which corticostriatal input zones from the primary motor cortex (MI), the supplementary motor area (SMA), and the premotor cortex of the macaque monkey might overlap in the putamen was investigated.
Abstract: It is an important issue to address the mode of information processing in the somatic motor circuit linking the frontal cortex and the basal ganglia. In the present study, we investigated the extent to which corticostriatal input zones from the primary motor cortex (MI), the supplementary motor area (SMA), and the premotor cortex (PM) of the macaque monkey might overlap in the putamen. Intracortical microstimulation was performed to map the MI, SMA, and dorsal (PMd) and ventral (PMv) divisions of the PM. Then, two different anterograde tracers were injected separately into somatotopically corresponding regions of two given areas of the MI, SMA, PMd, and PMv. With respect to the PMd and PMv, tracer injections were centered on their forelimb representations. Corticostriatal input zones from hindlimb, forelimb, and orofacial representations of the MI and SMA were, in this order, arranged from dorsal to ventral within the putamen. Dense input zones from the MI were located predominantly in the lateral aspect of the putamen, whereas those from the SMA were in the medial aspect of the putamen. On the other hand, corticostriatal inputs from forelimb representations of the PMd and PMv were distributed mainly in the dorsomedial sector of the putamen. Thus, the corticostriatal input zones from the MI and SMA were considerably segregated though partly overlapped in the mediolateral central aspect of the putamen, while the corticostriatal input zone from the PM largely overlapped that from the SMA, but not from the MI.

215 citations

Journal ArticleDOI
TL;DR: The neostriatal territories innervated by each subdivision can be correlated with the corresponding network, thus providing insight into the functional specializations of the striatum.

210 citations

Journal ArticleDOI
TL;DR: The results indicate separate connections between these systems and the medial and orbital prefrontal networks, which are differentially connected to auditory and visual areas of the superior and inferior temporal cortex.
Abstract: Previous studies indicate that the orbital and medial prefrontal cortex (OMPFC) is organized into "orbital" and "medial" networks, which have distinct connections with cortical, limbic, and subcortical structures. In this study, retrograde and anterograde tracer experiments in monkeys demonstrated differential connections between the medial and orbital networks and the dorsal and ventral parts of the temporal pole. The dorsal part, including dysgranular and granular areas (TGdd and TGdg), is reciprocally connected with the medial network areas on the medial wall and gyrus rectus (areas 10m, 10o, 11m, 13a, 14c, 14r, 25, and 32) and on the lateral orbital surface (areas Iai and 12o). The strongest connections are with areas 10m (caudal part), 14c, 14r, 25, 32, and Iai. The agranular temporal pole (TGa) is connected with several areas, but most strongly with medial network area 25. The granular area around the superior temporal sulcus (TGsts) and the ventral dysgranular and granular areas (TGvd and TGvg) are reciprocally connected with the orbital network (especially areas 11l, 13b, 13l, 13m, Ial, Iam, and Iapm). TGsts is strongly connected with the entire orbital network, whereas areas TGvd and TGvg have lighter and more limited connections. Intrinsic connections within the temporal pole are also restricted to dorsal or ventral parts. Together with evidence that the dorsal and ventral temporal pole are differentially connected to auditory and visual areas of the superior and inferior temporal cortex, the results indicate separate connections between these systems and the medial and orbital prefrontal networks.

202 citations

Journal ArticleDOI
TL;DR: The hypothesis that in the cortico-cerebellar system, functionally related structures evolve in concert with each other supported by comparing the volumes of cerebellar lobules in structural MRI scans in capuchins, chimpanzees and humans.

199 citations