scispace - formally typeset
Search or ask a question
Journal ArticleDOI

The organization of the human cerebral cortex estimated by intrinsic functional connectivity

TL;DR: In this paper, the organization of networks in the human cerebrum was explored using resting-state functional connectivity MRI data from 1,000 subjects and a clustering approach was employed to identify and replicate networks of functionally coupled regions across the cerebral cortex.
Abstract: Information processing in the cerebral cortex involves interactions among distributed areas. Anatomical connectivity suggests that certain areas form local hierarchical relations such as within the visual system. Other connectivity patterns, particularly among association areas, suggest the presence of large-scale circuits without clear hierarchical relations. In this study the organization of networks in the human cerebrum was explored using resting-state functional connectivity MRI. Data from 1,000 subjects were registered using surface-based alignment. A clustering approach was employed to identify and replicate networks of functionally coupled regions across the cerebral cortex. The results revealed local networks confined to sensory and motor cortices as well as distributed networks of association regions. Within the sensory and motor cortices, functional connectivity followed topographic representations across adjacent areas. In association cortex, the connectivity patterns often showed abrupt transitions between network boundaries. Focused analyses were performed to better understand properties of network connectivity. A canonical sensory-motor pathway involving primary visual area, putative middle temporal area complex (MT+), lateral intraparietal area, and frontal eye field was analyzed to explore how interactions might arise within and between networks. Results showed that adjacent regions of the MT+ complex demonstrate differential connectivity consistent with a hierarchical pathway that spans networks. The functional connectivity of parietal and prefrontal association cortices was next explored. Distinct connectivity profiles of neighboring regions suggest they participate in distributed networks that, while showing evidence for interactions, are embedded within largely parallel, interdigitated circuits. We conclude by discussing the organization of these large-scale cerebral networks in relation to monkey anatomy and their potential evolutionary expansion in humans to support cognition.
Citations
More filters
Journal ArticleDOI
TL;DR: Progress made during the first half of the Human Connectome Project project in refining the methods for data acquisition and analysis provides grounds for optimism that the HCP datasets and associated methods and software will become increasingly valuable resources for characterizing human brain connectivity and function, their relationship to behavior, and their heritability and genetic underpinnings.

4,388 citations

Journal ArticleDOI
17 Nov 2011-Neuron
TL;DR: In this article, the authors studied functional brain organization in healthy adults using resting state functional connectivity MRI and proposed two novel brain wide graphs, one of 264 putative functional areas, the other a modification of voxelwise networks that eliminates potentially artificial short-distance relationships.

3,517 citations

Journal ArticleDOI
11 Aug 2016-Nature
TL;DR: Using multi-modal magnetic resonance images from the Human Connectome Project and an objective semi-automated neuroanatomical approach, 180 areas per hemisphere are delineated bounded by sharp changes in cortical architecture, function, connectivity, and/or topography in a precisely aligned group average of 210 healthy young adults.
Abstract: Understanding the amazingly complex human cerebral cortex requires a map (or parcellation) of its major subdivisions, known as cortical areas. Making an accurate areal map has been a century-old objective in neuroscience. Using multi-modal magnetic resonance images from the Human Connectome Project (HCP) and an objective semi-automated neuroanatomical approach, we delineated 180 areas per hemisphere bounded by sharp changes in cortical architecture, function, connectivity, and/or topography in a precisely aligned group average of 210 healthy young adults. We characterized 97 new areas and 83 areas previously reported using post-mortem microscopy or other specialized study-specific approaches. To enable automated delineation and identification of these areas in new HCP subjects and in future studies, we trained a machine-learning classifier to recognize the multi-modal 'fingerprint' of each cortical area. This classifier detected the presence of 96.6% of the cortical areas in new subjects, replicated the group parcellation, and could correctly locate areas in individuals with atypical parcellations. The freely available parcellation and classifier will enable substantially improved neuroanatomical precision for studies of the structural and functional organization of human cerebral cortex and its variation across individuals and in development, aging, and disease.

3,414 citations

Journal ArticleDOI
TL;DR: It is found that motion-induced signal changes are often complex and variable waveforms, often shared across nearly all brain voxels, and often persist more than 10s after motion ceases, which increase observed RSFC correlations in a distance-dependent manner.

2,713 citations

References
More filters
Journal ArticleDOI
TL;DR: It is suggested that, as in the cerebral cortex, subcortical divisions can be identified in individuals using rs-fcMRI, and correlation maps associated with putative divisions were consistent with their presumed connectivity.
Abstract: Studies in non-human primates and humans reveal that discrete regions (henceforth, “divisions”) in the basal ganglia are intricately interconnected with regions in the cerebral cortex. However, divisions within basal ganglia nuclei (e.g., within the caudate) are difficult to identify using structural MRI. Resting-state functional connectivity MRI (rs-fcMRI) can be used to identify putative cerebral cortical functional areas in humans (Cohen et al., 2008). Here, we determine whether rs-fcMRI can be used to identify divisions in individual human adult basal ganglia. Putative basal ganglia divisions were generated by assigning basal ganglia voxels to groups based on the similarity of whole-brain functional connectivity correlation maps using modularity optimization, a network analysis tool. We assessed the validity of this approach by examining the spatial contiguity and location of putative divisions and whether divisions’ correlation maps were consistent with previously reported patterns of anatomical and functional connectivity. Spatially constrained divisions consistent with the dorsal caudate, ventral striatum, and dorsal caudal putamen could be identified in each subject. Further, correlation maps associated with putative divisions were consistent with their presumed connectivity. These findings suggest that, as in the cerebral cortex, subcortical divisions can be identified in individuals using rs-fcMRI. Developing and validating these methods should improve the study of brain structure and function, both typical and atypical, by allowing for more precise comparison across individuals.

134 citations

Journal ArticleDOI
23 Nov 2007-Science
TL;DR: This work reports two participants with severely impaired episodic memory who perform indistinguishably from healthy controls on objective ToM tests, suggesting that ToM can function independently of episodicMemory.
Abstract: Theory of mind (ToM) to infer other people's current mental states and episodic memory of personal happenings have been assumed to be closely related. We report two participants with severely impaired episodic memory who perform indistinguishably from healthy controls on objective ToM tests. These results suggest that ToM can function independently of episodic memory.

128 citations

Journal ArticleDOI
TL;DR: A small and fractured representation of single digits in the cerebellum is indicated and a fundamental difference in how the cere Bellum and the neocortex integrate sensory and motor events is suggested.
Abstract: The cerebellum is thought to play a key role in the integration of sensory and motor events. Little is known, however, about how sensory and motor maps in the cerebellum superimpose. In the present study we investigated the relationship between these two maps for the representation of single fingers. Participants made isometric key presses with individual fingers or received vibratory tactile stimulation to the fingertips while undergoing high-resolution functional magnetic resonance imaging (fMRI). Using multivariate analysis, we have demonstrated that the ipsilateral lobule V and VIII show patterns of activity that encode, within the same region, both which finger pressed and which finger was stimulated. The individual finger-specific activation patches are smaller than 3 mm and only show a weak somatotopic organization. To study the superposition of sensory and motor maps, we correlated the finger-specific patterns across the two conditions. In the neocortex, sensory stimulation of one digit led to activation of the same patches as force production by the same digit; in the cerebellum, these activation patches were organized in an uncorrelated manner. This suggests that, in the cerebellum, a movement of a particular finger is paired with a range of possible sensory outcomes. In summary, our results indicate a small and fractured representation of single digits in the cerebellum and suggest a fundamental difference in how the cerebellum and the neocortex integrate sensory and motor events.

121 citations

Journal ArticleDOI
TL;DR: It is argued that general theories of cerebellar function adapted from the motor literature may also provide a useful framework to understand the non-motor contributions of the cerebellum to verbal working memory.
Abstract: Neuropsychological findings together with recent advances in neuroanatomical and neuroimaging techniques have spurred the investigation of cerebellar contributions to cognition. One cognitive process that has been the focus of much research is working memory, in particular its verbal component. Influenced by Baddeley’s cognitive theory of working memory, cerebellar activation during verbal working memory tasks has been predominantly attributed to the cerebellum’s involvement in an articulatory rehearsal network. Recent neuroimaging and neuropsychological findings are inconsistent with a simple motor view of the cerebellum’s function in verbal working memory. The present article examines these findings and their implications for an articulatory rehearsal proposal of cerebellar function. Moving beyond cognitive theory, we propose two alternative explanations for cerebellar involvement in verbal working memory: Error-driven adjustment and internal timing. These general theories of cerebellar function have been successfully adapted from the motor literature to explain cognitive functions of the cerebellum. We argue that these theories may also provide a useful framework to understand the non-motor contributions of the cerebellum to verbal working memory.

121 citations

Journal ArticleDOI
TL;DR: Claims have been made that in addition to its role in motor control, the cerebellum is important for cognitive functions, such as learning, attention, and language, which are reviewed.

117 citations