scispace - formally typeset
Journal ArticleDOI

The origins and the future of microfluidics

George M. Whitesides
- 27 Jul 2006 - 
- Vol. 442, Iss: 7101, pp 368-373
Reads0
Chats0
TLDR
The manipulation of fluids in channels with dimensions of tens of micrometres — microfluidics — has emerged as a distinct new field that has the potential to influence subject areas from chemical synthesis and biological analysis to optics and information technology.
Abstract
The manipulation of fluids in channels with dimensions of tens of micrometres--microfluidics--has emerged as a distinct new field. Microfluidics has the potential to influence subject areas from chemical synthesis and biological analysis to optics and information technology. But the field is still at an early stage of development. Even as the basic science and technological demonstrations develop, other problems must be addressed: choosing and focusing on initial applications, and developing strategies to complete the cycle of development, including commercialization. The solutions to these problems will require imagination and ingenuity.

read more

Citations
More filters
Journal ArticleDOI

Isolation of rare circulating tumour cells in cancer patients by microchip technology.

TL;DR: The CTC-chip successfully identified CTCs in the peripheral blood of patients with metastatic lung, prostate, pancreatic, breast and colon cancer in 115 of 116 samples, with a range of 5–1,281CTCs per ml and approximately 50% purity.
Journal ArticleDOI

Diagnostics for the Developing World: Microfluidic Paper-Based Analytical Devices

TL;DR: Microfluidic paper-based analytical devices are a new class of point-of-care diagnostic devices that are inexpensive, easy to use, and designed specifically for use in developing countries.
Journal ArticleDOI

The present and future role of microfluidics in biomedical research

TL;DR: The progress made by lab-on-a-chip microtechnologies in recent years is analyzed, and the clinical and research areas in which they have made the greatest impact are discussed.
Journal ArticleDOI

Soft lithography for micro- and nanoscale patterning

TL;DR: This protocol provides an introduction to soft lithography—a collection of techniques based on printing, molding and embossing with an elastomeric stamp that has emerged as a technology useful for a number of applications that include cell biology, microfluidics, lab-on-a-chip, microelectromechanical systems and flexible electronics/photonics.
References
More filters
Journal ArticleDOI

Microfluidics: Fluid physics at the nanoliter scale

TL;DR: A review of the physics of small volumes (nanoliters) of fluids is presented, as parametrized by a series of dimensionless numbers expressing the relative importance of various physical phenomena as mentioned in this paper.
Journal ArticleDOI

Fabrication of microfluidic systems in poly(dimethylsiloxane)

TL;DR: Fabrication of microfluidic devices in poly(dimethylsiloxane) (PDMS) by soft lithography provides faster, less expensive routes to devices that handle aqueous solutions.
Journal ArticleDOI

Engineering flows in small devices

TL;DR: An overview of flows in microdevices with focus on electrokinetics, mixing and dispersion, and multiphase flows is provided, highlighting topics important for the description of the fluid dynamics: driving forces, geometry, and the chemical characteristics of surfaces.
Journal ArticleDOI

Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices.

TL;DR: This paper describes the compatibility of poly(dimethylsiloxane) (PDMS) with organic solvents; this compatibility is important in considering the potential of PDMS-based microfluidic devices in a number of applications, including that of microreactors for organic reactions.
PatentDOI

Microfluidic large scale integration

TL;DR: The fluidic multiplexor as discussed by the authors is a combinatorial array of binary valve patterns that exponentially increases the processing power of a network by allowing complex fluid manipulations with a minimal number of inputs.
Related Papers (5)