scispace - formally typeset
Open AccessJournal ArticleDOI

The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice.

Reads0
Chats0
TLDR
This mouse model of SARS-CoV-2 infection will be valuable for evaluating antiviral therapeutic agents and vaccines, as well as understanding the pathogenesis of COVID-19.
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of coronavirus disease 2019 (COVID-19), which has become a public health emergency of international concern1. Angiotensin-converting enzyme 2 (ACE2) is the cell-entry receptor for severe acute respiratory syndrome coronavirus (SARS-CoV)2. Here we infected transgenic mice that express human ACE2 (hereafter, hACE2 mice) with SARS-CoV-2 and studied the pathogenicity of the virus. We observed weight loss as well as virus replication in the lungs of hACE2 mice infected with SARS-CoV-2. The typical histopathology was interstitial pneumonia with infiltration of considerable numbers of macrophages and lymphocytes into the alveolar interstitium, and the accumulation of macrophages in alveolar cavities. We observed viral antigens in bronchial epithelial cells, macrophages and alveolar epithelia. These phenomena were not found in wild-type mice infected with SARS-CoV-2. Notably, we have confirmed the pathogenicity of SARS-CoV-2 in hACE2 mice. This mouse model of SARS-CoV-2 infection will be valuable for evaluating antiviral therapeutic agents and vaccines, as well as understanding the pathogenesis of COVID-19. Infection with SARS-CoV-2 causes interstitial pneumonia and viral replication in the lungs of transgenic mice that express a human version of ACE2, confirming the pathogenicity of the virus in this model.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Characteristics of SARS-CoV-2 and COVID-19

TL;DR: The basic virology of SARS-CoV-2 is described, including genomic characteristics and receptor use, highlighting its key difference from previously known coronaviruses.
Journal ArticleDOI

Coronavirus biology and replication: implications for SARS-CoV-2.

TL;DR: The first discoveries that shape the current understanding of SARS-CoV-2 infection throughout the intracellular viral life cycle are summarized and relate that to the knowledge of coronavirus biology.
Journal ArticleDOI

SARS-CoV-2 vaccines in development.

TL;DR: The development of vaccines against SARS-CoV-2 is reviewed, including an overview of the development process, the different types of vaccine candidate, and data from animal studies as well as phase I and II clinical trials in humans.
Journal ArticleDOI

Immunology of COVID-19: Current State of the Science.

Nicolas Vabret, +87 more
- 16 Jun 2020 - 
TL;DR: The current state of knowledge of innate and adaptive immune responses elicited by SARS-CoV-2 infection and the immunological pathways that likely contribute to disease severity and death are summarized.
Journal ArticleDOI

Virology, Epidemiology, Pathogenesis, and Control of COVID-19.

TL;DR: The present understanding of COVID-19 is detailed and the current state of development of measures are introduced in this review to provide a comprehensive summary to public health authorities and potential readers worldwide.
References
More filters
Journal ArticleDOI

A Novel Coronavirus from Patients with Pneumonia in China, 2019.

TL;DR: Human airway epithelial cells were used to isolate a novel coronavirus, named 2019-nCoV, which formed a clade within the subgenus sarbecovirus, Orthocoronavirinae subfamily, which is the seventh member of the family of coronaviruses that infect humans.
Journal ArticleDOI

SARS and MERS: recent insights into emerging coronaviruses

TL;DR: The emergence of Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012 marked the second introduction of a highly pathogenic coronav virus into the human population in the twenty-first century, and the current state of development of measures to combat emerging coronaviruses is discussed.
Related Papers (5)