scispace - formally typeset
Search or ask a question
Journal ArticleDOI

The photocatalytic activity of ZnO prepared by simple thermal decomposition method at various temperatures

TL;DR: In this paper, a nanorod of pure ZnO was synthesized by simple thermal decomposition method using direct calcination of zinc acetate dihydrate, which was confirmed by X-ray diffraction.
About: This article is published in Journal of Molecular Liquids.The article was published on 2013-01-01. It has received 450 citations till now. The article focuses on the topics: Calcination & Nanorod.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the polyaniline (PANI)/ZnO nanocomposite system exhibits superior degradation of methyl orange and methylene blue under visible light condition, due to the intermolecular interaction between conducting PANI and ZnO nanoparticles.

590 citations


Cites methods from "The photocatalytic activity of ZnO ..."

  • ...Scherrer formula was used to determine the crystallite size (D) of the synthesized catalyst [30]....

    [...]

Journal ArticleDOI
TL;DR: Results showed that the Ag nanoparticles induced visible light activity and facilitated efficient charge separation in the ZnO/Ag/CdO nanocomposite, thereby improving the photocatalytic performance.

574 citations

Journal ArticleDOI
TL;DR: In this paper, a facile and inexpensive route has been developed to synthesize a ternary ZnO/Ag/Mn2O3 nanocomposite having nanorod structures based on the thermal decomposition method.
Abstract: A facile and inexpensive route has been developed to synthesize a ternary ZnO/Ag/Mn2O3 nanocomposite having nanorod structures based on the thermal decomposition method. The as-synthesized ternary ZnO/Ag/Mn2O3 nanocomposite was characterized and used for visible light-induced photocatalytic, sensing and antimicrobial studies. The ternary ZnO/Ag/Mn2O3 nanocomposite exhibited excellent and enhanced visible light-induced photocatalytic degradation of industrial textile effluent (real sample analysis) compared to pure ZnO. Sensing studies showed that the ternary ZnO/Ag/Mn2O3 nanocomposite exhibited outstanding and improved detection of uric acid (UA) and ascorbic acid (AA). It also showed effective and efficient bactericidal activities against Staphylococcus aureus and Escherichia coli. These results suggest that the small size, high surface area and synergistic effect among ZnO, AgNPs and Mn2O3 induced visible light photocatalytic activity by decreasing the recombination of photogenerated electrons and holes, and extending the response of pure ZnO to visible light, enhanced sensing of UA and AA and antimicrobial activity. Overall, the ternary ZnO/Ag/Mn2O3 nanocomposite is a valuable material that can be used for a range of applications, such as visible light-induced photocatalysis, sensing and antimicrobial activity. Therefore, ternary nanocomposites could have important applications in environmental science, sensing, and biological fields.

401 citations

Journal ArticleDOI
TL;DR: It is found that the expose reductive W4+ active sites on the surface of WS2 can greatly accelerate the rate-limiting step of Fe3+/Fe2+ conversion, which plays the key role in the decomposition of H2O2 and the reduction of Cr(VI).
Abstract: The greatest problem in the Fe(II)/H2O2 Fenton reaction is the low production of ·OH owing to the inefficient Fe(III)/Fe(II) cycle and the low decomposition efficiency of H2O2 (<30%). Herein, we report a new discovery regarding the significant co-catalytic effect of WS2 on the decomposition of H2O2 in a photoassisted Fe(II)/H2O2 Fenton system. With the help of WS2 co-catalytic effect, the H2O2 decomposition efficiency can be increased from 22.9% to 60.1%, such that minimal concentrations of H2O2 (0.4 mmol/L) and Fe2+ (0.14 mmol/L) are necessary for the standard Fenton reaction. Interestingly, the co-catalytic Fenton strategy can be applied to the simultaneous oxidation of phenol (10 mg/L) and reduction of Cr(VI) (40 mg/L), and the corresponding degradation and reduction rates can reach up to 80.9% and 90.9%, respectively, which are much higher than the conventional Fenton reaction (52.0% and 31.0%). We found that the expose reductive W4+ active sites on the surface of WS2 can greatly accelerate the rate-l...

281 citations

Journal ArticleDOI
TL;DR: In this article, fibrillar and particulate structure magnetic carbons (MCFs and MCPs) were prepared from the same precursor (polyacrylonitrile and Fe(NO3)3·9H2O) using a different method, displaying a significant morphology dependence on wastewater treatment.
Abstract: Fibrillar and particulate structure magnetic carbons (MCFs and MCPs) were prepared from the same precursor (polyacrylonitrile and Fe(NO3)3·9H2O) by using a different method, displaying a significant morphology dependence on wastewater treatment. TEM, SEM, XPS, TGA, etc. were systematically carried out to characterize the carbon samples to verify the morphology difference between these two kinds of carbon adsorbents. The results demonstrated that, along with the increase of the Fe(NO3)3·9H2O loading in the precursor from 10 to 40 wt %, the fibrillar nanoadsorbents displayed an improved activity from 12.6% to 51.4% Cr(VI) removal percentage with the initial Cr(VI) concentration at 4 mg/L. For the maximum removal capacity, the fibrillar sample (MCFs-40) demonstrated 3 times higher removing capacity (43.17 mg/g) than that of particulate nanoadsorbents (MCPs-40, 15.88 mg/g) for the Cr(VI) removal with pH at 1, demonstrating that the fibrillar sample was more favorable for the wastewater treatment than particul...

262 citations

References
More filters
Journal ArticleDOI
TL;DR: An exact derivation of the Scherrer equation is given for particles of spherical shape, values of the constant for half-value breadth and for integral breadth being obtained in this article, and various approximation methods which have been used are compared with the exact calculation.
Abstract: An exact derivation of the Scherrer equation is given for particles of spherical shape, values of the constant for half-value breadth and for integral breadth being obtained. Various approximation methods which have been used are compared with the exact calculation. The tangent plane approximation of v. Laue is shown to be quite satisfactory, but some doubt is cast on the use of approximation functions. It is suggested that the calculation for the ellipsoidal particle based on the tangent plane approximation will provide a satisfactory basis for future work.

6,907 citations

Journal ArticleDOI
TL;DR: In this article, the photocatalytic degradation of azo dyes containing different functionalities has been reviewed using TiO2 as photocatalyst in aqueous solution under solar and UV irradiation.
Abstract: The photocatalytic degradation of azo dyes containing different functionalities has been reviewed using TiO2 as photocatalyst in aqueous solution under solar and UV irradiation. The mechanism of the photodegradation depends on the radiation used. Charge injection mechanism takes place under visible radiation whereas charge separation occurred under UV light radiation. The process is monitored by following either the decolorization rate and the formation of its end-products. Kinetic analyses indicate that the photodegradation rates of azo dyes can usually be approximated as pseudo-first-order kinetics for both degradation mechanisms, according to the Langmuir–Hinshelwood model. The degradation of dyes depend on several parameters such as pH, catalyst concentration, substrate concentration and the presence of electron acceptors such as hydrogen peroxide and ammonium persulphate besides molecular oxygen. The presence of other substances such as inorganic ions, humic acids and solvents commonly found in textile effluents is also discussed. The photocatalyzed degradation of pesticides does not occur instantaneously to form carbon dioxide, but through the formation of long-lived intermediate species. Thus, the study focuses also on the determination of the nature of the principal organic intermediates and the evolution of the mineralization as well as on the degradation pathways followed during the process. Major identified intermediates are hydroxylated derivatives, aromatic amines, naphthoquinone, phenolic compounds and several organic acids. By-products evaluation and toxicity measurements are the key-actions in order to assess the overall process.

3,692 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of the zinc precursor type, the aging of the starting solution, the substrate temperature and a vacuum-annealing treatment on the electrical, morphological, structural and optical properties was studied, in order to obtain conductive and transparent zinc oxide thin films.

2,780 citations

Journal ArticleDOI
TL;DR: The findings revealed that various parameters, such as the initial pH of the solution to be degraded, oxidizing agents, temperature at which the catalysts must be calcined, dopant(s) content and catalyst loading exert their individual influence on the photocatalytic degradation of any dye in wastewaters.

1,576 citations