scispace - formally typeset
Search or ask a question
Journal ArticleDOI

The physics and technology of gallium antimonide: An emerging optoelectronic material

01 May 1997-Journal of Applied Physics (American Institute of Physics)-Vol. 81, Iss: 9, pp 5821-5870
TL;DR: The 3-V ternaries and quaternaries (AlGaIn)(AsSb) lattice matched to GaSb is a promising material for high speed electronic and long wavelength photonic devices.
Abstract: Recent advances in nonsilica fiber technology have prompted the development of suitable materials for devices operating beyond 155 mu m The III-V ternaries and quaternaries (AlGaIn)(AsSb) lattice matched to GaSb seem to be the obvious choice and have turned out to be promising candidates for high speed electronic and long wavelength photonic devices Consequently, there has been tremendous upthrust in research activities of GaSb-based systems As a matter of fact, this compound has proved to be an interesting material for both basic and applied research At present, GaSb technology is in its infancy and considerable research has to be carried out before it can be employed for large scale device fabrication This article presents an up to date comprehensive account of research carried out hitherto It explores in detail the material aspects of GaSb starting from crystal growth in bulk and epitaxial form, post growth material processing to device feasibility An overview of the lattice, electronic, transport, optical and device related properties is presented Some of the current areas of research and development have been critically reviewed and their significance for both understanding the basic physics as well as for device applications are addressed These include the role of defects and impurities on the structural, optical and electrical properties of the material, various techniques employed for surface and bulk defect passivation and their effect on the device characteristics, development of novel device structures, etc Several avenues where further work is required in order to upgrade this III-V compound for optoelectronic devices are listed It is concluded that the present day knowledge in this material system is sufficient to understand the basic properties and what should be more vigorously pursued is their implementation for device fabrication (C) 1997 American Institute of Physics
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present a comprehensive, up-to-date compilation of band parameters for the technologically important III-V zinc blende and wurtzite compound semiconductors.
Abstract: We present a comprehensive, up-to-date compilation of band parameters for the technologically important III–V zinc blende and wurtzite compound semiconductors: GaAs, GaSb, GaP, GaN, AlAs, AlSb, AlP, AlN, InAs, InSb, InP, and InN, along with their ternary and quaternary alloys. Based on a review of the existing literature, complete and consistent parameter sets are given for all materials. Emphasizing the quantities required for band structure calculations, we tabulate the direct and indirect energy gaps, spin-orbit, and crystal-field splittings, alloy bowing parameters, effective masses for electrons, heavy, light, and split-off holes, Luttinger parameters, interband momentum matrix elements, and deformation potentials, including temperature and alloy-composition dependences where available. Heterostructure band offsets are also given, on an absolute scale that allows any material to be aligned relative to any other.

6,349 citations

Journal ArticleDOI
TL;DR: In this article, the progress on three antimonide-based electronic devices: high electron mobility transistors (HEMTs), resonant tunneling diodes (RTDs), and heterojunction bipolar transistors(HBTs) is reviewed.
Abstract: Several research groups have been actively pursuing antimonide-based electronic devices in recent years. The advantage of narrow-bandgap Sb-based devices over conventional GaAs- or InP-based devices is the attainment of high-frequency operation with much lower power consumption. This paper will review the progress on three antimonide-based electronic devices: high electron mobility transistors (HEMTs), resonant tunneling diodes (RTDs), and heterojunction bipolar transistors (HBTs). Progress on the HEMT includes the demonstration of Ka- and W-band low-noise amplifier circuits that operate at less than one-third the power of similar InP-based circuits. The RTDs exhibit excellent figures of merit but, like their InP- and GaAs-based counterparts, are waiting for a viable commercial application. Several approaches are being investigated for HBTs, with circuits reported using InAs and InGaAs bases.

336 citations

Journal ArticleDOI
TL;DR: In this paper, an InGaAs monolithic interconnected module (MIM) using reflective spectral control has been fabricated and measured in a thermophotovoltaic radiator/module system (radiator, optical cavity, and thermophotonic module).
Abstract: An InGaAs monolithic interconnected module (MIM) using reflective spectral control has been fabricated and measured in a thermophotovoltaic radiator/module system (radiator, optical cavity, and thermophotovoltaic module). Results showed that at a radiator and module temperature of 1039/spl deg/C and 25/spl deg/C, respectively, 23.6% thermophotovoltaic radiator/module system radiant heat conversion efficiency and 0.79W/cm/sup 2/ maximum thermophotovoltaic radiator/module system power density were obtained. The use of reflective spectral control increased the spectral efficiency and thus the thermophotovoltaic radiator/module system radiant heat conversion efficiency by /spl sim/16% (relative). However, the amount of useful radiation reaching the MIM decreased by /spl sim/7% (relative) compared to using transmissive spectral control. Also, the thermophotovoltaic system radiant heat conversion efficiency and maximum power density using either transmissive or reflective spectral control decreased as the MIM temperature increased. The MIM using reflective spectral control was found to be more sensitive to changes in the MIM temperature than the MIM using transmissive spectral control.

155 citations


Cites background or methods from "The physics and technology of galli..."

  • ...Therefore, to create highly efficient and power dense MIM TPV devices grown on InP, InGaAs is used since this ternary has the lowest bandgap possible in the InxGa1 xAsySb1 y (y = 1) material system [6]....

    [...]

  • ...Along with having different lattice parameters ( 6:10 and 5:88 A for GaSb and InP, respectively) [6] and bandgaps ( 0:73 and 1:38 eV for GaSb and InP, respectively) [6], the major distinction between these substrates is that GaSb is intrinsically p-doped and conductive [6] while InP can be made semi-insulating via Fe doping [7]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors reported near-infrared lasing in the telecommunications band in gallium antimonide semiconductor subwavelength wires for future photonic integrated circuits for telecommunications applications.
Abstract: We report near-infrared lasing in the telecommunications band in gallium antimonide semiconductor subwavelength wires. Our results open the possibility of the use of semiconductor subwavelength-wire lasers in future photonic integrated circuits for telecommunications applications.

148 citations

Journal ArticleDOI
TL;DR: The synthesis of GaSb/GaInSb p-n heterojunction semiconductor nanowires for the first time through a controllable chemical vapor deposition (CVD) route is reported, which shows promising potential applications in integrated photonics and optoelectronics devices or systems.
Abstract: Nanoscale near-infrared photodetectors are attractive for their potential applications in integrated optoelectronic devices. Here we report the synthesis of GaSb/GaInSb p-n heterojunction semiconductor nanowires for the first time through a controllable chemical vapor deposition (CVD) route. Based on these nanowires, room-temperature, high-performance, near-infrared photodetectors were constructed. The fabricated devices show excellent light response in the infrared optical communication region (1.55 mu m), with an external quantum efficiency of 10(4), a responsivity of 10(3) A/W, and a short response time of 2 ms, which shows promising potential applications in integrated photonics and optoelectronics devices or systems.

138 citations

References
More filters
Book
01 Jan 1973
TL;DR: CRC handbook of chemistry and physics, CRC Handbook of Chemistry and Physics, CRC handbook as discussed by the authors, CRC Handbook for Chemistry and Physiology, CRC Handbook for Physics,
Abstract: CRC handbook of chemistry and physics , CRC handbook of chemistry and physics , کتابخانه مرکزی دانشگاه علوم پزشکی تهران

52,268 citations

Book
01 Jan 1958

11,521 citations

Journal ArticleDOI
David E. Aspnes1, A. A. Studna1
TL;DR: In this paper, the pseudodielectric functions of spectroscopic ellipsometry and refractive indices were measured using the real-time capability of the spectro-optical ellipsometer.
Abstract: We report values of pseudodielectric functions $〈\ensuremath{\epsilon}〉=〈{\ensuremath{\epsilon}}_{1}〉+i〈{\ensuremath{\epsilon}}_{2}〉$ measured by spectroscopic ellipsometry and refractive indices $\stackrel{\ifmmode \tilde{}\else \~{}\fi{}}{n}=n+ik$, reflectivities $R$, and absorption coefficients $\ensuremath{\alpha}$ calculated from these data. Rather than correct ellipsometric results for the presence of overlayers, we have removed these layers as far as possible using the real-time capability of the spectroscopic ellipsometer to assess surface quality during cleaning. Our results are compared with previous data. In general, there is good agreement among optical parameters measured on smooth, clean, and undamaged samples maintained in an inert atmosphere regardless of the technique used to obtain the data. Differences among our data and previous results can generally be understood in terms of inadequate sample preparation, although results obtained by Kramers-Kronig analysis of reflectance measurements often show effects due to improper extrapolations. The present results illustrate the importance of proper sample preparation and of the capability of separately determining both ${\ensuremath{\epsilon}}_{1}$ and ${\ensuremath{\epsilon}}_{2}$ in optical measurements.

3,094 citations

Book
01 May 1977
TL;DR: In this paper, the authors describe the use of the Kerre basis algorithm in mathematical morphology, R. Jones and I.D. Svalbe mirror-bank energy analyzers, S.P. Cahay and S.A. Bandyopadhyay fuzzy relations and applications, B. de Baets and E.S.
Abstract: Digital techniques in electron off-axis holography, G. Ade optical symbolic substitution architectures, M.S. Alam and M.A. Karim semiconductor quantum devices, M. Cahay and S. Bandyopadhyay fuzzy relations and applications, B. de Baets and E. Kerre basis algorithms in mathematical morphology, R. Jones and I.D. Svalbe mirror-bank energy analyzers, S.P. Karetskaya et al.

2,112 citations