scispace - formally typeset
Journal ArticleDOI

The physics of traffic jams

Takashi Nagatani
- 13 Aug 2002 - 
- Vol. 65, Iss: 9, pp 1331-1386
Reads0
Chats0
TLDR
In this paper, a car-following model is proposed to investigate the bunching transition and bus delay in traffic flow and pedestrian flow, and detailed results obtained mainly from the microscopic car following models are presented.
Abstract
Traffic flow is a kind of many-body system of strongly interacting vehicles. Traffic jams are a typical signature of the complex behaviour of vehicular traffic. Various models are presented to understand the rich variety of physical phenomena exhibited by traffic. Analytical and numerical techniques are applied to study these models. Particularly, we present detailed results obtained mainly from the microscopic car-following models. A typical phenomenon is the dynamical jamming transition from the free traffic (FT) at low density to the congested traffic at high density. The jamming transition exhibits the phase diagram similar to a conventional gas-liquid phase transition: the FT and congested traffic correspond to the gas and liquid phases, respectively. The dynamical transition is described by the time-dependent Ginzburg-Landau equation for the phase transition. The jamming transition curve is given by the spinodal line. The metastability exists in the region between the spinodal and phase separation lines. The jams in the congested traffic reveal various density waves. Some of these density waves show typical nonlinear waves such as soliton, triangular shock and kink. The density waves are described by the nonlinear wave equations: the Korteweg-de-Vries (KdV) equation, the Burgers equation and the Modified KdV equation. Subjects like the traffic flow such as bus-route system and pedestrian flow are touched as well. The bus-route system with many buses exhibits the bunching transition where buses bunch together with proceeding ahead. Such dynamic models as the car-following model are proposed to investigate the bunching transition and bus delay. A recurrent bus exhibits the dynamical transition between the delay and schedule-time phases. The delay transition is described in terms of the nonlinear map. The pedestrian flow also reveals the jamming transition from the free flow at low density to the clogging at high density. Some models are presented to study the pedestrian flow. When the clogging occurs, the pedestrian flow shows the scaling behaviour.

read more

Citations
More filters
Journal ArticleDOI

Statistical physics of social dynamics

TL;DR: In this article, a wide list of topics ranging from opinion and cultural and language dynamics to crowd behavior, hierarchy formation, human dynamics, and social spreading are reviewed and connections between these problems and other, more traditional, topics of statistical physics are highlighted.
Journal ArticleDOI

Synchronization in complex networks

TL;DR: The advances in the comprehension of synchronization phenomena when oscillating elements are constrained to interact in a complex network topology are reported and the new emergent features coming out from the interplay between the structure and the function of the underlying pattern of connections are overviewed.
Journal ArticleDOI

General Lane-Changing Model MOBIL for Car-Following Models

TL;DR: A general model (minimizing overall braking induced by lane change, MOBIL) is proposed to derive lane-changing rules for discretionary and mandatory lane changes for a wide class of car-following models and allows one to vary the motivation for lane changing from purely egoistic to more cooperative driving behavior.
Journal ArticleDOI

Traffic jams without bottlenecks—experimental evidence for the physical mechanism of the formation of a jam

TL;DR: In this paper, the authors present experimental evidence that the emergence of a traffic jam is a collective phenomenon like "dynamical" phase transitions and pattern formation, and show that a bottleneck is only a trigger and not the essential origin of traffic jam.
Journal ArticleDOI

Delays, inaccuracies and anticipation in microscopic traffic models

TL;DR: A wide class of time-continuous microscopic traffic models is generalized to include essential aspects of driver behaviour not captured by these models, including finite reaction times, estimation errors, and looking several vehicles ahead (spatial anticipation), and temporal anticipation.
References
More filters
Book

Phase Transitions and Critical Phenomena

TL;DR: The field of phase transitions and critical phenomena continues to be active in research, producing a steady stream of interesting and fruitful results as discussed by the authors, and the major aim of this serial is to provide review articles that can serve as standard references for research workers in the field.
Journal ArticleDOI

Pattern formation outside of equilibrium

TL;DR: A comprehensive review of spatiotemporal pattern formation in systems driven away from equilibrium is presented in this article, with emphasis on comparisons between theory and quantitative experiments, and a classification of patterns in terms of the characteristic wave vector q 0 and frequency ω 0 of the instability.
Journal ArticleDOI

Social Force Model for Pedestrian Dynamics

TL;DR: Computer simulations of crowds of interacting pedestrians show that the social force model is capable of describing the self-organization of several observed collective effects of pedestrian behavior very realistically.
Book

Introduction to Phase Transitions and Critical Phenomena

TL;DR: In this article, the authors present a paperback edition of a distinguished book, originally published by Clarendon Press in 1971, which is at the level at which a graduate student who has studied condensed matter physics can begin to comprehend the nature of phase transitions, which involve the transformation of one state of matter into another.
Journal ArticleDOI

Simulating dynamical features of escape panic

TL;DR: A model of pedestrian behaviour is used to investigate the mechanisms of panic and jamming by uncoordinated motion in crowds, and an optimal strategy for escape from a smoke-filled room is found, involving a mixture of individualistic behaviour and collective ‘herding’ instinct.
Related Papers (5)