scispace - formally typeset
Search or ask a question
Journal ArticleDOI

The present and future role of microfluidics in biomedical research

13 Mar 2014-Nature (Nature Research)-Vol. 507, Iss: 7491, pp 181-189
TL;DR: The progress made by lab-on-a-chip microtechnologies in recent years is analyzed, and the clinical and research areas in which they have made the greatest impact are discussed.
Abstract: Microfluidics, a technology characterized by the engineered manipulation of fluids at the submillimetre scale, has shown considerable promise for improving diagnostics and biology research. Certain properties of microfluidic technologies, such as rapid sample processing and the precise control of fluids in an assay, have made them attractive candidates to replace traditional experimental approaches. Here we analyse the progress made by lab-on-a-chip microtechnologies in recent years, and discuss the clinical and research areas in which they have made the greatest impact. We also suggest directions that biologists, engineers and clinicians can take to help this technology live up to its potential.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: 2D and 3D cell culture methods are reviewed, advantages and limitations of these techniques in modeling physiologically and pathologically relevant processes are discussed, and directions for future research are suggested.
Abstract: Cell culture has become an indispensable tool to help uncover fundamental biophysical and biomolecular mechanisms by which cells assemble into tissues and organs, how these tissues function, and how that function becomes disrupted in disease. Cell culture is now widely used in biomedical research, tissue engineering, regenerative medicine, and industrial practices. Although flat, two-dimensional (2D) cell culture has predominated, recent research has shifted toward culture using three-dimensional (3D) structures, and more realistic biochemical and biomechanical microenvironments. Nevertheless, in 3D cell culture, many challenges remain, including the tissue-tissue interface, the mechanical microenvironment, and the spatiotemporal distributions of oxygen, nutrients, and metabolic wastes. Here, we review 2D and 3D cell culture methods, discuss advantages and limitations of these techniques in modeling physiologically and pathologically relevant processes, and suggest directions for future research.

1,048 citations

Journal ArticleDOI
TL;DR: The purpose of this review is to convey the fundamentals of droplet microfluidics, a critical analysis on its current status and challenges, and opinions on its future development.
Abstract: Droplet microfluidics generates and manipulates discrete droplets through immiscible multiphase flows inside microchannels Due to its remarkable advantages, droplet microfluidics bears significant value in an extremely wide range of area In this review, we provide a comprehensive and in-depth insight into droplet microfluidics, covering fundamental research from microfluidic chip fabrication and droplet generation to the applications of droplets in bio(chemical) analysis and materials generation The purpose of this review is to convey the fundamentals of droplet microfluidics, a critical analysis on its current status and challenges, and opinions on its future development We believe this review will promote communications among biology, chemistry, physics, and materials science

990 citations

Journal ArticleDOI
TL;DR: The new opportunities for the application of organ-on-chip technologies in a range of areas in preclinical drug discovery, such as target identification and validation, target-based screening, and phenotypic screening are examined.
Abstract: Microengineered cell culture systems are becoming sufficiently sophisticated that they can recapitulate many of the phenomena observed in tissues and organisms. Here, Huh and colleagues discuss the advances made in these 'organs-on-chips' and how they could be used in drug development, including target identification and validation, toxicity screening and stratified medicine.

929 citations

Journal ArticleDOI
TL;DR: This review examines the breadth of microfluidic cell sorting technologies, while focusing on those that offer the greatest potential for translation into clinical and industrial practice and that offer multiple, useful functions.
Abstract: Accurate and high throughput cell sorting is a critical enabling technology in molecular and cellular biology, biotechnology, and medicine While conventional methods can provide high efficiency sorting in short timescales, advances in microfluidics have enabled the realization of miniaturized devices offering similar capabilities that exploit a variety of physical principles We classify these technologies as either active or passive Active systems generally use external fields (eg, acoustic, electric, magnetic, and optical) to impose forces to displace cells for sorting, whereas passive systems use inertial forces, filters, and adhesion mechanisms to purify cell populations Cell sorting on microchips provides numerous advantages over conventional methods by reducing the size of necessary equipment, eliminating potentially biohazardous aerosols, and simplifying the complex protocols commonly associated with cell sorting Additionally, microchip devices are well suited for parallelization, enabling complete lab-on-a-chip devices for cellular isolation, analysis, and experimental processing In this review, we examine the breadth of microfluidic cell sorting technologies, while focusing on those that offer the greatest potential for translation into clinical and industrial practice and that offer multiple, useful functions We organize these sorting technologies by the type of cell preparation required (ie, fluorescent label-based sorting, bead-based sorting, and label-free sorting) as well as by the physical principles underlying each sorting mechanism

845 citations

Journal ArticleDOI
03 Oct 2014-Science
TL;DR: The state of the art in nanoparticle development, surface chemistry, and biosensing mechanisms is reviewed, including the precision synthesis of nanoparticles in microfluidic systems; ultrasensitive detection of cancer biomarkers in human serum with time-gated QD fluorescence; multiplexed intracellular sensing of mRNA; and the integration of nanoparticle biosensors with advanced DNA/RNA target amplification protocols are reviewed.
Abstract: Colloidal nanoparticle biosensors have received intense scientific attention and offer promising applications in both research and medicine. We review the state of the art in nanoparticle development, surface chemistry, and biosensing mechanisms, discussing how a range of technologies are contributing toward commercial and clinical translation. Recent examples of success include the ultrasensitive detection of cancer biomarkers in human serum and in vivo sensing of methyl mercury. We identify five key materials challenges, including the development of robust mass-scale nanoparticle synthesis methods, and five broader challenges, including the use of simulations and bioinformatics-driven experimental approaches for predictive modeling of biosensor performance. The resultant generation of nanoparticle biosensors will form the basis of high-performance analytical assays, effective multiplexed intracellular sensors, and sophisticated in vivo probes.

834 citations


Cites background from "The present and future role of micr..."

  • ...A particular area of interest is in nanoparticle biosensors for pointof-care diagnostics—for example, in microfluidic “lab-on-a-chip” devices (87) or merging with technologies such as smartphones (Fig....

    [...]

References
More filters
Journal ArticleDOI
27 Jul 2006-Nature
TL;DR: The manipulation of fluids in channels with dimensions of tens of micrometres — microfluidics — has emerged as a distinct new field that has the potential to influence subject areas from chemical synthesis and biological analysis to optics and information technology.
Abstract: The manipulation of fluids in channels with dimensions of tens of micrometres--microfluidics--has emerged as a distinct new field. Microfluidics has the potential to influence subject areas from chemical synthesis and biological analysis to optics and information technology. But the field is still at an early stage of development. Even as the basic science and technological demonstrations develop, other problems must be addressed: choosing and focusing on initial applications, and developing strategies to complete the cycle of development, including commercialization. The solutions to these problems will require imagination and ingenuity.

8,260 citations

Journal ArticleDOI
TL;DR: A procedure that makes it possible to design and fabricate microfluidic systems in an elastomeric material poly(dimethylsiloxane) (PDMS) in less than 24 h by fabricating a miniaturized capillary electrophoresis system is described.
Abstract: This paper describes a procedure that makes it possible to design and fabricate (including sealing) microfluidic systems in an elastomeric materialpoly(dimethylsiloxane) (PDMS)in less than 24 h. A network of microfluidic channels (with width >20 μm) is designed in a CAD program. This design is converted into a transparency by a high-resolution printer; this transparency is used as a mask in photolithography to create a master in positive relief photoresist. PDMS cast against the master yields a polymeric replica containing a network of channels. The surface of this replica, and that of a flat slab of PDMS, are oxidized in an oxygen plasma. These oxidized surfaces seal tightly and irreversibly when brought into conformal contact. Oxidized PDMS also seals irreversibly to other materials used in microfluidic systems, such as glass, silicon, silicon oxide, and oxidized polystyrene; a number of substrates for devices are, therefore, practical options. Oxidation of the PDMS has the additional advantage that it ...

5,491 citations

Journal ArticleDOI
07 Apr 2000-Science
TL;DR: An extension to the soft lithography paradigm, multilayersoft lithography, with which devices consisting of multiple layers may be fabricated from soft materials is described, to build active microfluidic systems containing on-off valves, switching valves, and pumps entirely out of elastomer.
Abstract: Soft lithography is an alternative to silicon-based micromachining that uses replica molding of nontraditional elastomeric materials to fabricate stamps and microfluidic channels. We describe here an extension to the soft lithography paradigm, multilayer soft lithography, with which devices consisting of multiple layers may be fabricated from soft materials. We used this technique to build active microfluidic systems containing on-off valves, switching valves, and pumps entirely out of elastomer. The softness of these materials allows the device areas to be reduced by more than two orders of magnitude compared with silicon-based devices. The other advantages of soft lithography, such as rapid prototyping, ease of fabrication, and biocompatibility, are retained.

4,218 citations

Journal ArticleDOI
TL;DR: The research and development costs of 68 randomly selected new drugs were obtained from a survey of 10 pharmaceutical firms and used to estimate the average pre-tax cost of new drug development.

4,135 citations

Journal ArticleDOI
25 Jun 2010-Science
TL;DR: Mechanically active “organ-on-a-chip” microdevices that reconstitute tissue-tissue interfaces critical to organ function may expand the capabilities of cell culture models and provide low-cost alternatives to animal and clinical studies for drug screening and toxicology applications.
Abstract: Here, we describe a biomimetic microsystem that reconstitutes the critical functional alveolar-capillary interface of the human lung. This bioinspired microdevice reproduces complex integrated organ-level responses to bacteria and inflammatory cytokines introduced into the alveolar space. In nanotoxicology studies, this lung mimic revealed that cyclic mechanical strain accentuates toxic and inflammatory responses of the lung to silica nanoparticles. Mechanical strain also enhances epithelial and endothelial uptake of nanoparticulates and stimulates their transport into the underlying microvascular channel. Similar effects of physiological breathing on nanoparticle absorption are observed in whole mouse lung. Mechanically active "organ-on-a-chip" microdevices that reconstitute tissue-tissue interfaces critical to organ function may therefore expand the capabilities of cell culture models and provide low-cost alternatives to animal and clinical studies for drug screening and toxicology applications.

3,081 citations