scispace - formally typeset
Search or ask a question
Book ChapterDOI

The Problem of Hidden Variables in Quantum Mechanics

01 Jan 1967-Indiana University Mathematics Journal (Springer, Dordrecht)-Vol. 17, Iss: 1, pp 293-328
TL;DR: The problem of hidden variables in quantum theory has been a controversial and obscure subject for decades as mentioned in this paper, and there are many proofs of the non-existence of such variables, most notably von Neumann's proof, and various attempts to introduce hidden variables such as de Broglie [4] and Bohm [1] and [2].
Abstract: Forty years after the advent of quantum mechanics the problem of hidden variables, that is, the possibility of imbedding quantum theory into a classical theory, remains a controversial and obscure subject. Whereas to most physicists the possibility of a classical reinterpretation of quantum mechanics remains remote and perhaps irrelevant to current problems, a minority have kept the issue alive throughout this period. (See Freistadt [5] for a review of the problem and a comprehensive bibliography up to 1957.) As far as results are concerned there are on the one hand purported proofs of the non-existence of hidden variables, most notably von Neumann’s proof, and on the other, various attempts to introduce hidden variables such as de Broglie [4] and Bohm [1] and [2]. One of the difficulties in evaluating these contradictory results is that no exact mathematical criterion is given to enable one to judge the degree of success of these proposals.
Citations
More filters
Book
21 Feb 1967
TL;DR: In a course of lectures given by Professor Nelson at Princeton during the spring term of 1966, the authors traces the history of earlier work in Brownian motion, both the mathematical theory, and the natural phenomenon with its physical interpretations.
Abstract: These notes are based on a course of lectures given by Professor Nelson at Princeton during the spring term of 1966. The subject of Brownian motion has long been of interest in mathematical probability. In these lectures, Professor Nelson traces the history of earlier work in Brownian motion, both the mathematical theory, and the natural phenomenon with its physical interpretations. He continues through recent dynamical theories of Brownian motion, and concludes with a discussion of the relevance of these theories to quantum field theory and quantum statistical mechanics.

1,517 citations

Journal ArticleDOI
01 Sep 1979-Synthese
TL;DR: The Mathematical Foundations of Quantum Mechanics as mentioned in this paper were the first to provide a rigorous mathematical formulation of quantum theory and a systematic comparison with classical mechanics so that the full ramifications of the quantum revolution could be clearly revealed.
Abstract: Classical mechanics was first envisaged by Newton, formed into a powerful tool by Euler, and brought to perfection by Lagrange and Laplace. It has served as the paradigm of science ever since. Even the great revolutions of 19th century phys icsnamely, the FaradayMaxwell electro-magnetic theory and the kinetic t h e o r y w e r e viewed as further support for the complete adequacy of the mechanistic world view. The physicist at the end of the 19th century had a coherent conceptual scheme which, in principle at least, answered all his questions about the world. The only work left to be done was the computing of the next decimal. This consensus began to unravel at the beginning of the 20th century. The work of Planck, Einstein, and Bohr simply could not be made to fit. The series of ad hoc moves by Bohr, Eherenfest, et al., now called the old quantum theory, was viewed by all as, at best, a stopgap. In the period 1925-27 a new synthesis was formed by Heisenberg, Schr6dinger, Dirac and others. This new synthesis was so successful that even today, fifty years later, physicists still teach quantum mechanics as it was formulated by these men. Nevertheless, two foundational tasks remained: that of providing a rigorous mathematical formulation of the theory, and that of providing a systematic comparison with classical mechanics so that the full ramifications of the quantum revolution could be clearly revealed. These tasks are, of course, related, and a possible fringe benefit of the second task might be the pointing of the way 'beyond quantum theory'. These tasks were taken up by von Neumann as a consequence of a seminar on the foundations of quantum mechanics conducted by Hilbert in the fall of 1926. In papers published in 1927 and in his book, The Mathemat ical Foundations of Quantum Mechanics, von Neumann provided the first completely rigorous

1,055 citations

Journal ArticleDOI
TL;DR: The Kochen-Specker Theorem as discussed by the authors is one of the most famous no-hidden-variables theorems, and it has transparently simple proofs, which can be converted without additional analysis into a powerful form of the Bell's Theorem.
Abstract: Although skeptical of the prohibitive power of no-hidden-variables theorems, John Bell was himself responsible for the two most important ones. I describe some recent versions of the lesser known of the two (familiar to experts as the "Kochen-Specker theorem") which have transparently simple proofs. One of the new versions can be converted without additional analysis into a powerful form of the very much better known "Bell's Theorem," thereby clarifying the conceptual link between these two results of Bell.

1,012 citations

Book
01 Sep 1994
TL;DR: Penrose's The Emperor's New Mind as mentioned in this paper was universally hailed as a marvelous survey of modern physics as well as a brilliant reflection on the human mind, offering a new perspective on the scientific landscape and a visionary glimpse of the possible future of science.
Abstract: From the Publisher: A New York Times bestseller when it appeared in 1989, Roger Penrose's The Emperor's New Mind was universally hailed as a marvelous survey of modern physics as well as a brilliant reflection on the human mind, offering a new perspective on the scientific landscape and a visionary glimpse of the possible future of science. Now, in Shadows of the Mind, Penrose offers another exhilarating look at modern science as he mounts an even more powerful attack on artificial intelligence. But perhaps more important, in this volume he points the way to a new science, one that may eventually explain the physical basis of the human mind. Penrose contends that some aspects of the human mind lie beyond computation. This is not a religious argument (that the mind is something other than physical) nor is it based on the brain's vast complexity (the weather is immensely complex, says Penrose, but it is still a computable thing, at least in theory). Instead, he provides powerful arguments to support his conclusion that there is something in the conscious activity of the brain that transcends computation - and will find no explanation in terms of present-day science. To illuminate what he believes this "something" might be, and to suggest where a new physics must proceed so that we may understand it, Penrose cuts a wide swathe through modern science, providing penetrating looks at everything from Turing computability and Godel's incompleteness, via Schrodinger's Cat and the Elitzur-Vaidman bomb-testing problem, to detailed microbiology. Of particular interest is Penrose's extensive examination of quantum mechanics, which introduces some new ideas that differ markedly from those advanced in The Emperor's New Mind, especially concerning the mysterious interface where classical and quantum physics meet. But perhaps the most interesting wrinkle in Shadows of the Mind is Penrose's excursion into microbiology, where he examines cytoskeletons and microtubules, minute substructures lying dee

764 citations

Journal ArticleDOI
TL;DR: The toy theory of as discussed by the authors states that the number of questions about the physical state of a system that are answered must always be equal to the number that are unanswered in a state of maximal knowledge.
Abstract: We present a toy theory that is based on a simple principle: the number of questions about the physical state of a system that are answered must always be equal to the number that are unanswered in a state of maximal knowledge. Many quantum phenomena are found to have analogues within this toy theory. These include the noncommutativity of measurements, interference, the multiplicity of convex decompositions of a mixed state, the impossibility of discriminating nonorthogonal states, the impossibility of a universal state inverter, the distinction between bipartite and tripartite entanglement, the monogamy of pure entanglement, no cloning, no broadcasting, remote steering, teleportation, entanglement swapping, dense coding, mutually unbiased bases, and many others. The diversity and quality of these analogies is taken as evidence for the view that quantum states are states of incomplete knowledge rather than states of reality. A consideration of the phenomena that the toy theory fails to reproduce, notably, violations of Bell inequalities and the existence of a Kochen-Specker theorem, provides clues for how to proceed with this research program.

726 citations

References
More filters
Book
01 Jan 1961

20,079 citations

Journal ArticleDOI
TL;DR: In this paper, the theory of measurements is to be understood from the point of view of a physical interpretation of the quantum theory in terms of hidden variables developed in a previous paper.
Abstract: In this paper, we shall show how the theory of measurements is to be understood from the point of view of a physical interpretation of the quantum theory in terms of hidden variables developed in a previous paper. We find that in principle, these \"hidden\" variables determine the precise results of each individual measurement process. In practice, however, in measurements that we now know how to carry out, the observing apparatus disturbs the observed system in an unpredictable and uncontrollable way, so that the uncertainty principle is obtained as a practical limitation on the possible precision of measurements. This limitation is not, however, inherent in the conceptual structure of our interpretation. We shall see, for example, that simultaneous measurements of position and momentum having unlimited precision would in principle be possible if, as suggested in the previous paper, the mathematical formulation of the quantum theory needs to be modined at very short distances in certain ways that are consistent with our interpretation but not with the usual interpretation. We give a simple explanation of the origin of quantum-mechanical correlations of distant objects in the hypothetical experiment of Einstein, Podolsky, and Rosen, which was suggested by these authors as a criticism of the usual interpretation. Finally, we show that von Neumann's proof that quantum theory is not consistent with hidden variables does not apply to our interpretation, because the hidden variables contemplated here depend both on the state of the measuring apparatus and the observed system and therefore go beyond certain of von 1umann's assumptions. In two appendixes, we treat the problem oi the electromagnetic field in our interpretation and answer certain additional objections which have arisen in the attempt to give a precise description for an individual system at the quantum level.

5,110 citations

Book
01 Jan 1955
TL;DR: The Mathematical Foundations of Quantum Mechanics as discussed by the authors is a seminal work in theoretical physics that introduced the theory of Hermitean operators and Hilbert spaces and provided a mathematical framework for quantum mechanics.
Abstract: Mathematical Foundations of Quantum Mechanics was a revolutionary book that caused a sea change in theoretical physics. Here, John von Neumann, one of the leading mathematicians of the twentieth century, shows that great insights in quantum physics can be obtained by exploring the mathematical structure of quantum mechanics. He begins by presenting the theory of Hermitean operators and Hilbert spaces. These provide the framework for transformation theory, which von Neumann regards as the definitive form of quantum mechanics. Using this theory, he attacks with mathematical rigor some of the general problems of quantum theory, such as quantum statistical mechanics as well as measurement processes. Regarded as a tour de force at the time of publication, this book is still indispensable for those interested in the fundamental issues of quantum mechanics.

4,908 citations

01 Jan 1996
TL;DR: The Mathematical Foundations of Quantum Mechanics as discussed by the authors is a seminal work in theoretical physics that introduced the theory of Hermitean operators and Hilbert spaces and provided a mathematical framework for quantum mechanics.
Abstract: Mathematical Foundations of Quantum Mechanics was a revolutionary book that caused a sea change in theoretical physics. Here, John von Neumann, one of the leading mathematicians of the twentieth century, shows that great insights in quantum physics can be obtained by exploring the mathematical structure of quantum mechanics. He begins by presenting the theory of Hermitean operators and Hilbert spaces. These provide the framework for transformation theory, which von Neumann regards as the definitive form of quantum mechanics. Using this theory, he attacks with mathematical rigor some of the general problems of quantum theory, such as quantum statistical mechanics as well as measurement processes. Regarded as a tour de force at the time of publication, this book is still indispensable for those interested in the fundamental issues of quantum mechanics.

4,043 citations

Book ChapterDOI
TL;DR: In this paper, a measure on the closed subspaces of a Hilbert space is defined, which assigns to every closed subspace a non-negative real number such that if the subspace is a countable collection of mutually orthogonal sub-spaces having closed linear span B, then
Abstract: In his investigations of the mathematical foundations of quantum mechanics, Mackey1 has proposed the following problem: Determine all measures on the closed subspaces of a Hilbert space. A measure on the closed subspaces means a function μ which assigns to every closed subspace a non-negative real number such that if {Ai} is a countable collection of mutually orthogonal subspaces having closed linear span B, then $$ \mu (B) = \sum {\mu \left( {{A_i}} \right)} $$ .

1,322 citations