scispace - formally typeset
Search or ask a question
Journal ArticleDOI

The Processing of Calcium Rich Agricultural and Industrial Waste for Recovery of Calcium Carbonate and Calcium Oxide and Their Application for Environmental Cleanup: A Review

06 May 2021-Applied Sciences (Multidisciplinary Digital Publishing Institute)-Vol. 11, Iss: 9, pp 4212
TL;DR: In this paper, the authors have emphasized on the all the calcium rich agro industries and industrial by products, especially their processing by various approaches and focused on the properties and application of such calcium carbonate and oxide particles for the remediation of organic and inorganic pollutants from the environments.
Abstract: Every year a million tonnes of calcium rich agro and industrial waste are generated around the whole globe. These calcium rich waste like finger citron, shells of cockle, mussel, oysters etc., and egg shell are biological sources which have various organic compounds. The inorganic calcium rich waste includes gypsum, dolomite, sludge etc., which are produced in surplus amount globally. Most of these by-products are mainly dumped, while few are used for land-filling purposes which leads to the pollution. These agro and industrial by-products could be processed for the recovery of calcium carbonate and calcium oxide particles by physical and chemical method. The recovery of calcium carbonate and calcium oxide particles from such by products make them biocompatible. Moreover, the products are economical due to their synthesis from waste materials. Here, in this current review work we have emphasized on the all the calcium rich agro industries and industrial by products, especially their processing by various approaches. Further, we have also focused on the properties and application of such calcium carbonate and oxide particles for the remediation of organic and inorganic pollutants from the environments. The recovery of such particles from these byproducts is considered not only economical and eco-friendly but it also minimizes the pollution present in the form of solid waste.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article , a review of the current solid waste management and energy recovery production in developing countries is presented, where the authors provide a comprehensive revision on energy recovery technologies such as the thermochemical and biochemical conversion of waste with economic considerations, including several immediate actions and future policy recommendations for improving the current status of SWM via harnessing technology.

45 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the current solid waste management and energy recovery production in developing countries is presented, including several immediate actions and future policy recommendations for improving the current status of SWM via harnessing technology.

45 citations

01 Jan 2012
TL;DR: This study investigates the effects of calcium carbonate (CaCO3) nanoparticles on the mechanical and thermal properties and surface morphology of polycaprolactone (PCL)/chitosan nanocomposite and shows an increase in the tensile modulus with CaCO3 nanoparticle loading.
Abstract: This study investigates the effects of calcium carbonate (CaCO3) nanoparticles on the mechanical and thermal properties and surface morphology of polycaprolactone (PCL)/chitosan nanocomposites. The nanocomposites of PCL/chitosan/CaCO3 were prepared using a melt blending technique. Transmission electron microscopy (TEM) results indicate the average size of nanoparticles to be approximately 62 nm. Tensile measurement results show an increase in the tensile modulus with CaCO3 nanoparticle loading. Tensile strength and elongation at break show gradual improvement with the addition of up to 1 wt% of nano-sized CaCO3. Decreasing performance of these properties is observed for loading of more than 1 wt% of nano-sized CaCO3. The thermal stability was best enhanced at 1 wt% of CaCO3 nanoparticle loading. The fractured surface morphology of the PCL/chitosan blend becomes more stretched and homogeneous in PCL/chitosan/CaCO3 nanocomposite. TEM micrograph displays good dispersion of CaCO3 at lower nanoparticle loading within the matrix.

30 citations

Journal ArticleDOI
12 Nov 2021-Water
TL;DR: In this article, a green synthesis method using naturally occurring montmorillonite (MMT) clay and silver nanoparticles was used for removing methylene blue (MB) from textiles.
Abstract: Textile industries are the largest consumer of synthetic dyestuff compounds and consequently, they are the prime contributor of colored organic contaminants to the environment. The dye compounds when released in soil or freshwater resources such as rivers, cause a potential hazard to living beings due to their toxic, allergic and carcinogenic nature. Current conventional treatment methods for removal or degradation of such dyestuff materials from water systems are not sufficient, and therefore, there is an immediate need to find efficient and eco-friendly approaches. In this regard, nanotechnology can offer an effective solution to this problem. In the present work, montmorillonite/silver nanocomposite (MMT/Ag nanocomposite) is developed through green synthesis methods using naturally occurring montmorillonite (MMT) clay and silver nanoparticles. The material was characterized by using a particle size analyzer (PSA), UV/Visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscope (FE-SEM), energy dispersive X-ray (EDX) spectroscopy and a Brunner–Emmett–Teller (BET) surface area analyzer. The adsorption efficiency of the nanocomposite and per cent removal of methylene blue (MB) was investigated by using a batch system.

18 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, the main anthropogenic sources of polycyclic aromatic hydrocarbons (PAHs) and their effect on the concentrations of these compounds in air are discussed.

2,217 citations

Journal ArticleDOI
TL;DR: The main impacts due to waste mismanagement in developing countries are reviewed, focusing on environmental contamination and social issues, and the activity of the informal sector in developing cities was also reviewed.
Abstract: Environmental contamination due to solid waste mismanagement is a global issue. Open dumping and open burning are the main implemented waste treatment and final disposal systems, mainly visible in low-income countries. This paper reviews the main impacts due to waste mismanagement in developing countries, focusing on environmental contamination and social issues. The activity of the informal sector in developing cities was also reviewed, focusing on the main health risks due to waste scavenging. Results reported that the environmental impacts are pervasive worldwide: marine litter, air, soil and water contamination, and the direct interaction of waste pickers with hazardous waste are the most important issues. Many reviews were published in the scientific literature about specific waste streams, in order to quantify its effect on the environment. This narrative literature review assessed global issues due to different waste fractions showing how several sources of pollution are affecting the environment, population health, and sustainable development. The results and case studies presented can be of reference for scholars and stakeholders for quantifying the comprehensive impacts and for planning integrated solid waste collection and treatment systems, for improving sustainability at a global level.

937 citations

Journal ArticleDOI
TL;DR: This review identifies emerging technologies that enable resource recovery across the wastewater treatment cycle and focuses on the generation and re-synthesis of energetic resources and key resources to be recycled as raw materials in a cradle-to-cradle economy concept.
Abstract: Limits in resource availability are driving a change in current societal production systems, changing the focus from residues treatment, such as wastewater treatment, toward resource recovery. Biotechnological processes offer an economic and versatile way to concentrate and transform resources from waste/wastewater into valuable products, which is a prerequisite for the technological development of a cradle-to-cradle bio-based economy. This review identifies emerging technologies that enable resource recovery across the wastewater treatment cycle. As such, bioenergy in the form of biohydrogen (by photo and dark fermentation processes) and biogas (during anaerobic digestion processes) have been classic targets, whereby, direct transformation of lipidic biomass into biodiesel also gained attention. This concept is similar to previous biofuel concepts, but more sustainable, as third generation biofuels and other resources can be produced from waste biomass. The production of high value biopolymers (e.g., for bioplastics manufacturing) from organic acids, hydrogen, and methane is another option for carbon recovery. The recovery of carbon and nutrients can be achieved by organic fertilizer production, or single cell protein generation (depending on the source) which may be utilized as feed, feed additives, next generation fertilizers, or even as probiotics. Additionlly, chemical oxidation-reduction and bioelectrochemical systems can recover inorganics or synthesize organic products beyond the natural microbial metabolism. Anticipating the next generation of wastewater treatment plants driven by biological recovery technologies, this review is focused on the generation and re-synthesis of energetic resources and key resources to be recycled as raw materials in a cradle-to-cradle economy concept.

363 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used the Langmuir and Freundlich adsorption models to describe the equilibrium isotherm and to calculate the equilibrium constants of FACs.
Abstract: Activated carbon derived from finger citron residue (FAC) was tested as a new type of adsorbent for the removal of harmful dyes, namely, the anionic dye methyl orange (MO) and the cationic dye methylene blue (MB), from contaminated water. Liquid-phase adsorption experiments were conducted, and the maximum adsorption capacity was determined. Various conditions were evaluated, including initial dye concentration, adsorbent dosage, contact time, solution pH, and temperature. The Langmuir and Freundlich adsorption models were used to describe the equilibrium isotherm and to calculate the isotherm constants. It was found that the adsorption capacity of FAC is much higher than those of other types of activated carbons. Maximum equilibrium adsorption capacities of 934.58 and 581.40 mg/g for MO and MB, respectively, were achieved. Three simplified kinetic models, namely, pseudo-first-order, pseudo-second-order, and intraparticle diffusion equations, were used to investigate the adsorption process. The pseudo-seco...

263 citations

Journal ArticleDOI
TL;DR: This manuscript scopes to review the mechanism of the calcium carbonate crystal growth highlighting the factors stabilizing the vaterite polymorph in the most cost efficient synthesis routine.

259 citations