scispace - formally typeset
Search or ask a question
Monograph•DOI•

The quantum theory of fields

30 Jun 1995-pp 635
TL;DR: Weinberg as discussed by the authors presented a self-contained, up-to-date and comprehensive introduction to supersymmetry, a highly active area of theoretical physics, including supersymmetric algebras.
Abstract: In this third volume of The Quantum Theory of Fields, available for the first time in paperback, Nobel Laureate Steven Weinberg continues his masterly exposition of quantum field theory. This volume presents a self-contained, up-to-date and comprehensive introduction to supersymmetry, a highly active area of theoretical physics. The text introduces and explains a broad range of topics, including supersymmetric algebras, supersymmetric field theories, extended supersymmetry, supergraphs, non-perturbative results, theories of supersymmetry in higher dimensions, and supergravity. A thorough review is given of the phenomenological implications of supersymmetry, including theories of both gauge and gravitationally-mediated supersymmetry breaking. Also provided is an introduction to mathematical techniques, based on holomorphy and duality, that have proved so fruitful in recent developments. This book contains much material not found in other books on supersymmetry, including previously unpublished results. Exercises are included.
Citations
More filters
Journal Article•DOI•
TL;DR: The current status of particle dark matter, including experimental evidence and theoretical motivations, including direct and indirect detection techniques, is discussed in this paper. But the authors focus on neutralinos in models of supersymmetry and Kaluza-Klein dark matter in universal extra dimensions.

4,614 citations

Journal Article•DOI•
Frank Wilczek1•
TL;DR: In this paper, the experimentally measured value of the magnetic dipole moment of the muon was compared with the theoretical prediction of 233,183,478, and 308, respectively.
Abstract: Quantum field theory is the framework in which the regnant theories of the electroweak and strong interactions, which together form the standard model, are formulated. Quantum electrodynamics (QED), besides providing a complete foundation for atomic physics and chemistry, has supported calculations of physical quantities with unparalleled precision. The experimentally measured value of the magnetic dipole moment of the muon, $${\left({{g_\mu } - 2} \right)_{\exp }} = 233\,184\,600\,\left({1680} \right) \times {10^{ - 11}},$$ for example, should be compared with the theoretical prediction $${\left({{g_\mu } - 2} \right)_{{\rm{theor}}}} = 233\,183\,478\,\left( {308} \right) \times {10^{ - 11}}$$ (see the chapter by Hughes and Kinoshita on pp. 223-233 in this book).

2,529 citations

Journal Article•DOI•
Sean A. Hartnoll1•
TL;DR: In this article, a discussion of holographic techniques progresses from equilibrium, to transport and to superconductivity, and the discussion of supergravity, Strings and Gauge theories are discussed.
Abstract: These notes are loosely based on lectures given at the CERN Winter School on Supergravity, Strings and Gauge theories, February 2009, and at the IPM String School in Tehran, April 2009. I have focused on a few concrete topics and also on addressing questions that have arisen repeatedly. Background condensed matter physics material is included as motivation and easy reference for the high energy physics community. The discussion of holographic techniques progresses from equilibrium, to transport and to superconductivity.

1,951 citations

Journal Article•DOI•
TL;DR: In this article, the authors considered a modified theory of gravity, where the gravitational Lagrangian is given by an arbitrary function of the Ricci scalar and of the trace of the stress-energy tensor.
Abstract: We consider $f(R,T)$ modified theories of gravity, where the gravitational Lagrangian is given by an arbitrary function of the Ricci scalar $R$ and of the trace of the stress-energy tensor $T$. We obtain the gravitational field equations in the metric formalism, as well as the equations of motion for test particles, which follow from the covariant divergence of the stress-energy tensor. Generally, the gravitational field equations depend on the nature of the matter source. The field equations of several particular models, corresponding to some explicit forms of the function $f(R,T)$, are also presented. An important case, which is analyzed in detail, is represented by scalar field models. We write down the action and briefly consider the cosmological implications of the $f(R,{T}^{\ensuremath{\phi}})$ models, where ${T}^{\ensuremath{\phi}}$ is the trace of the stress-energy tensor of a self-interacting scalar field. The equations of motion of the test particles are also obtained from a variational principle. The motion of massive test particles is nongeodesic, and takes place in the presence of an extra-force orthogonal to the four velocity. The Newtonian limit of the equation of motion is further analyzed. Finally, we provide a constraint on the magnitude of the extra acceleration by analyzing the perihelion precession of the planet Mercury in the framework of the present model.

1,833 citations

Journal Article•DOI•
TL;DR: In this article, the axion quintessence can be explained by the potential energy of axions that have not yet relaxed to their minima in string compactifications, and axion potential can naturally fall close to the observed value of cosmological constant.
Abstract: String theory axions appear to be promising candidates for explaining cosmological constant via quintessence. In this paper, we study conditions on the string compactifications under which axion quintessence can happen. For sufficiently large number of axions, cosmological constant can be accounted for as the potential energy of axions that have not yet relaxed to their minima. In compactifications that incorporate unified models of particle physics, the height of the axion potential can naturally fall close to the observed value of cosmological constant.

1,189 citations