scispace - formally typeset
Search or ask a question
Journal ArticleDOI

The Quantum Theory of Light

01 Sep 1974-Journal of Modern Optics (Taylor & Francis Group)-Vol. 21, Iss: 9, pp 755-755
TL;DR: In this article, the time dependence of ρ11, ρ22 and ρ12 under steady-state conditions was analyzed under a light field interaction V = -μ12Ee iωt + c.c.
Abstract: (b) Write out the equations for the time dependence of ρ11, ρ22, ρ12 and ρ21 assuming that a light field interaction V = -μ12Ee iωt + c.c. couples only levels |1> and |2>, and that the excited levels exhibit spontaneous decay. (8 marks) (c) Under steady-state conditions, find the ratio of populations in states |2> and |3>. (3 marks) (d) Find the slowly varying amplitude ̃ ρ 12 of the polarization ρ12 = ̃ ρ 12e iωt . (6 marks) (e) In the limiting case that no decay is possible from intermediate level |3>, what is the ground state population ρ11(∞)? (2 marks) 2. (15 marks total) In a 2-level atom system subjected to a strong field, dressed states are created in the form |D1(n)> = sin θ |1,n> + cos θ |2,n-1> |D2(n)> = cos θ |1,n> sin θ |2,n-1>
Citations
More filters
Journal ArticleDOI
TL;DR: Theoretical and experimental work on radio-frequency (Paul) traps is reviewed in this paper, with a focus on ions trapped in radiofrequency traps, which are ideal for quantum-optical and quantum-dynamical studies under well controlled conditions.
Abstract: Single trapped ions represent elementary quantum systems that are well isolated from the environment. They can be brought nearly to rest by laser cooling, and both their internal electronic states and external motion can be coupled to and manipulated by light fields. This makes them ideally suited for quantum-optical and quantum-dynamical studies under well-controlled conditions. Theoretical and experimental work on these topics is reviewed in the paper, with a focus on ions trapped in radio-frequency (Paul) traps.

2,406 citations

Journal ArticleDOI
TL;DR: Graphene plasmons have been proposed as a platform for strongly enhanced light-matter interactions in this paper, where the authors predict unprecedented high decay rates of quantum emitters in the proximity of a carbon sheet, observable vacuum Rabi splittings, and extinction cross sections exceeding the geometrical area in graphene nanoribbons and nanodisks.
Abstract: Graphene plasmons provide a suitable alternative to noble-metal plasmons because they exhibit much tighter confinement and relatively long propagation distances, with the advantage of being highly tunable via electrostatic gating. Here, we propose to use graphene plasmons as a platform for strongly enhanced light–matter interactions. Specifically, we predict unprecedented high decay rates of quantum emitters in the proximity of a carbon sheet, observable vacuum Rabi splittings, and extinction cross sections exceeding the geometrical area in graphene nanoribbons and nanodisks. Our theoretical results provide the basis for the emerging and potentially far-reaching field of graphene plasmonics, offering an ideal platform for cavity quantum electrodynamics, and supporting the possibility of single-molecule, single-plasmon devices.

2,379 citations

Journal ArticleDOI
TL;DR: OCT as discussed by the authors synthesises cross-sectional images from a series of laterally adjacent depth-scans, which can be used to assess tissue and cell function and morphology in situ.
Abstract: There have been three basic approaches to optical tomography since the early 1980s: diffraction tomography, diffuse optical tomography and optical coherence tomography (OCT). Optical techniques are of particular importance in the medical field, because these techniques promise to be safe and cheap and, in addition, offer a therapeutic potential. Advances in OCT technology have made it possible to apply OCT in a wide variety of applications but medical applications are still dominating. Specific advantages of OCT are its high depth and transversal resolution, the fact, that its depth resolution is decoupled from transverse resolution, high probing depth in scattering media, contact-free and non-invasive operation, and the possibility to create various function dependent image contrasting methods. This report presents the principles of OCT and the state of important OCT applications. OCT synthesises cross-sectional images from a series of laterally adjacent depth-scans. At present OCT is used in three different fields of optical imaging, in macroscopic imaging of structures which can be seen by the naked eye or using weak magnifications, in microscopic imaging using magnifications up to the classical limit of microscopic resolution and in endoscopic imaging, using low and medium magnification. First, OCT techniques, like the reflectometry technique and the dual beam technique were based on time-domain low coherence interferometry depth-scans. Later, Fourier-domain techniques have been developed and led to new imaging schemes. Recently developed parallel OCT schemes eliminate the need for lateral scanning and, therefore, dramatically increase the imaging rate. These schemes use CCD cameras and CMOS detector arrays as photodetectors. Video-rate three-dimensional OCT pictures have been obtained. Modifying interference microscopy techniques has led to high-resolution optical coherence microscopy that achieved sub-micrometre resolution. This report is concluded with a short presentation of important OCT applications. Ophthalmology is, due to the transparent ocular structures, still the main field of OCT application. The first commercial instrument too has been introduced for ophthalmic diagnostics (Carl Zeiss Meditec AG). Advances in using near-infrared light, however, opened the path for OCT imaging in strongly scattering tissues. Today, optical in vivo biopsy is one of the most challenging fields of OCT application. High resolution, high penetration depth, and its potential for functional imaging attribute to OCT an optical biopsy quality, which can be used to assess tissue and cell function and morphology in situ. OCT can already clarify the relevant architectural tissue morphology. For many diseases, however, including cancer in its early stages, higher resolution is necessary. New broad-bandwidth light sources, like photonic crystal fibres and superfluorescent fibre sources, and new contrasting techniques, give access to new sample properties and unmatched sensitivity and resolution.

1,914 citations

Journal ArticleDOI
TL;DR: In this paper, a quantum-mechanical description of the interaction between the electrons and the sample is discussed, followed by a powerful classical dielectric approach that can be in practice applied to more complex systems.
Abstract: This review discusses how low-energy, valence excitations created by swift electrons can render information on the optical response of structured materials with unmatched spatial resolution. Electron microscopes are capable of focusing electron beams on sub-nanometer spots and probing the target response either by analyzing electron energy losses or by detecting emitted radiation. Theoretical frameworks suited to calculate the probability of energy loss and light emission (cathodoluminescence) are revisited and compared with experimental results. More precisely, a quantum-mechanical description of the interaction between the electrons and the sample is discussed, followed by a powerful classical dielectric approach that can be in practice applied to more complex systems. We assess the conditions under which classical and quantum-mechanical formulations are equivalent. The excitation of collective modes such as plasmons is studied in bulk materials, planar surfaces, and nanoparticles. Light emission induced by the electrons is shown to constitute an excellent probe of plasmons, combining sub-nanometer resolution in the position of the electron beam with nanometer resolution in the emitted wavelength. Both electron energy-loss and cathodoluminescence spectroscopies performed in a scanning mode of operation yield snap shots of plasmon modes in nanostructures with fine spatial detail as compared to other existing imaging techniques, thus providing an ideal tool for nanophotonics studies.

1,288 citations

Journal ArticleDOI
TL;DR: In this paper, quantum jump, Monte Carlo wave function, and quantum-trajectory methods are discussed and applied to a number of current problems in quantum optics, and relate them to ensemble descriptions.
Abstract: Dissipation, the irreversible loss of energy and coherence, from a microsystem is the result of coupling to a much larger macrosystem (or reservoir) that is so large that one has no chance of keeping track of all of its degrees of freedom. The microsystem evolution is then described by tracing over the reservoir states, which results in an irreversible decay as excitation leaks out of the initially excited microsystems into the outer reservoir environment. Earlier treatments of this dissipation used density matrices to describe an ensemble of microsystems, either in the Schr\"odinger picture with master equations, or in the Heisenberg picture with Langevin equations. The development of experimental techniques to study single quantum systems (for example, single trapped ions, or cavity-radiation-field modes) has stimulated the construction of theoretical methods to describe individual realizations conditioned on a particular observation record of the decay channel. These methods, variously described as quantum-jump, Monte Carlo wave function, and quantum-trajectory methods, are the subject of this review article. We discuss their derivation, apply them to a number of current problems in quantum optics, and relate them to ensemble descriptions.

1,232 citations


Cites background or methods from "The Quantum Theory of Light"

  • ...&2 , (24) where the colons describe normal ordering (Loudon, 1983)....

    [...]

  • ...It is well known (Loudon, 1983) that the stationary spectrum of resonance fluorescence of such a two-level system is given by S ~2 !~D!...

    [...]

  • ...&, (89) where in the last line we have used the well-known expression for the Heisenberg operator of the electric-field operator, which can be written as a free-field contribution and a source term (the dipole of the atom radiates the outgoing field) (Loudon, 1983)....

    [...]

  • ...It is worth noting that for short times t we expect to see antibunching (Loudon, 1983) from this three-level fluorescence, and this has been observed experimentally from trapped ions (Itano et al., 1988; Schubert et al., 1992)....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: Theoretical and experimental work on radio-frequency (Paul) traps is reviewed in this paper, with a focus on ions trapped in radiofrequency traps, which are ideal for quantum-optical and quantum-dynamical studies under well controlled conditions.
Abstract: Single trapped ions represent elementary quantum systems that are well isolated from the environment. They can be brought nearly to rest by laser cooling, and both their internal electronic states and external motion can be coupled to and manipulated by light fields. This makes them ideally suited for quantum-optical and quantum-dynamical studies under well-controlled conditions. Theoretical and experimental work on these topics is reviewed in the paper, with a focus on ions trapped in radio-frequency (Paul) traps.

2,406 citations

Journal ArticleDOI
TL;DR: OCT as discussed by the authors synthesises cross-sectional images from a series of laterally adjacent depth-scans, which can be used to assess tissue and cell function and morphology in situ.
Abstract: There have been three basic approaches to optical tomography since the early 1980s: diffraction tomography, diffuse optical tomography and optical coherence tomography (OCT). Optical techniques are of particular importance in the medical field, because these techniques promise to be safe and cheap and, in addition, offer a therapeutic potential. Advances in OCT technology have made it possible to apply OCT in a wide variety of applications but medical applications are still dominating. Specific advantages of OCT are its high depth and transversal resolution, the fact, that its depth resolution is decoupled from transverse resolution, high probing depth in scattering media, contact-free and non-invasive operation, and the possibility to create various function dependent image contrasting methods. This report presents the principles of OCT and the state of important OCT applications. OCT synthesises cross-sectional images from a series of laterally adjacent depth-scans. At present OCT is used in three different fields of optical imaging, in macroscopic imaging of structures which can be seen by the naked eye or using weak magnifications, in microscopic imaging using magnifications up to the classical limit of microscopic resolution and in endoscopic imaging, using low and medium magnification. First, OCT techniques, like the reflectometry technique and the dual beam technique were based on time-domain low coherence interferometry depth-scans. Later, Fourier-domain techniques have been developed and led to new imaging schemes. Recently developed parallel OCT schemes eliminate the need for lateral scanning and, therefore, dramatically increase the imaging rate. These schemes use CCD cameras and CMOS detector arrays as photodetectors. Video-rate three-dimensional OCT pictures have been obtained. Modifying interference microscopy techniques has led to high-resolution optical coherence microscopy that achieved sub-micrometre resolution. This report is concluded with a short presentation of important OCT applications. Ophthalmology is, due to the transparent ocular structures, still the main field of OCT application. The first commercial instrument too has been introduced for ophthalmic diagnostics (Carl Zeiss Meditec AG). Advances in using near-infrared light, however, opened the path for OCT imaging in strongly scattering tissues. Today, optical in vivo biopsy is one of the most challenging fields of OCT application. High resolution, high penetration depth, and its potential for functional imaging attribute to OCT an optical biopsy quality, which can be used to assess tissue and cell function and morphology in situ. OCT can already clarify the relevant architectural tissue morphology. For many diseases, however, including cancer in its early stages, higher resolution is necessary. New broad-bandwidth light sources, like photonic crystal fibres and superfluorescent fibre sources, and new contrasting techniques, give access to new sample properties and unmatched sensitivity and resolution.

1,914 citations

Journal ArticleDOI
TL;DR: In this paper, a quantum-mechanical description of the interaction between the electrons and the sample is discussed, followed by a powerful classical dielectric approach that can be in practice applied to more complex systems.
Abstract: This review discusses how low-energy, valence excitations created by swift electrons can render information on the optical response of structured materials with unmatched spatial resolution. Electron microscopes are capable of focusing electron beams on sub-nanometer spots and probing the target response either by analyzing electron energy losses or by detecting emitted radiation. Theoretical frameworks suited to calculate the probability of energy loss and light emission (cathodoluminescence) are revisited and compared with experimental results. More precisely, a quantum-mechanical description of the interaction between the electrons and the sample is discussed, followed by a powerful classical dielectric approach that can be in practice applied to more complex systems. We assess the conditions under which classical and quantum-mechanical formulations are equivalent. The excitation of collective modes such as plasmons is studied in bulk materials, planar surfaces, and nanoparticles. Light emission induced by the electrons is shown to constitute an excellent probe of plasmons, combining sub-nanometer resolution in the position of the electron beam with nanometer resolution in the emitted wavelength. Both electron energy-loss and cathodoluminescence spectroscopies performed in a scanning mode of operation yield snap shots of plasmon modes in nanostructures with fine spatial detail as compared to other existing imaging techniques, thus providing an ideal tool for nanophotonics studies.

1,288 citations

Journal ArticleDOI
TL;DR: In this paper, quantum jump, Monte Carlo wave function, and quantum-trajectory methods are discussed and applied to a number of current problems in quantum optics, and relate them to ensemble descriptions.
Abstract: Dissipation, the irreversible loss of energy and coherence, from a microsystem is the result of coupling to a much larger macrosystem (or reservoir) that is so large that one has no chance of keeping track of all of its degrees of freedom. The microsystem evolution is then described by tracing over the reservoir states, which results in an irreversible decay as excitation leaks out of the initially excited microsystems into the outer reservoir environment. Earlier treatments of this dissipation used density matrices to describe an ensemble of microsystems, either in the Schr\"odinger picture with master equations, or in the Heisenberg picture with Langevin equations. The development of experimental techniques to study single quantum systems (for example, single trapped ions, or cavity-radiation-field modes) has stimulated the construction of theoretical methods to describe individual realizations conditioned on a particular observation record of the decay channel. These methods, variously described as quantum-jump, Monte Carlo wave function, and quantum-trajectory methods, are the subject of this review article. We discuss their derivation, apply them to a number of current problems in quantum optics, and relate them to ensemble descriptions.

1,232 citations

Journal ArticleDOI
David DeMille1
TL;DR: This design can plausibly lead to a quantum computer with greater, approximately > or = 10(4) qubits, which can perform approximately 10(5) CNOT gates in the anticipated decoherence time of approximately 5 s.
Abstract: We propose a novel physical realization of a quantum computer. The qubits are electric dipole moments of ultracold diatomic molecules, oriented along or against an external electric field. Individual molecules are held in a 1D trap array, with an electric field gradient allowing spectroscopic addressing of each site. Bits are coupled via the electric dipole-dipole interaction. Using technologies similar to those already demonstrated, this design can plausibly lead to a quantum computer with $\ensuremath{\gtrsim}{10}^{4}$ qubits, which can perform $\ensuremath{\sim}{10}^{5}$ CNOT gates in the anticipated decoherence time of $\ensuremath{\sim}5\mathrm{s}$.

1,164 citations