scispace - formally typeset
Search or ask a question

The Quest for the Africa-Eurasia plate boundary West of the Strait of Gibraltar

TL;DR: In this article, a set of almost linear and sub-par dextral strike-slip faults, the SWIM1 Faults, that form a narrow band of deformation over a length of 600 km coincident with a small circle centred on the pole of rotation of Africa with respect to Eurasia, was mapped using a new swath bathymetry compilation available in the area offshore SW Portugal.
Abstract: The missing link in the plate boundary between Eurasia and Africa in the central Atlantic is presented and discussed. A set of almost linear and sub parallel dextral strike–slip faults, the SWIM1 Faults, that form a narrow band of deformation over a length of 600 km coincident with a small circle centred on the pole of rotation of Africa with respect to Eurasia, was mapped using a new swath bathymetry compilation available in the area offshore SW Portugal. These faults connect the Gloria Fault to the Rif–Tell Fault Zone, two segments of the plate boundary between Africa and Eurasia. The SWIM faults cut across the Gulf of Cadiz, in the Atlantic Ocean, where the 1755 Great Lisbon earthquake, M ~ 8.5–8.7, and tsunami were generated, providing a new insight on its source location.
Citations
More filters
Journal ArticleDOI
TL;DR: The General Bathymetric Chart of the Oceans (GEBCO) as discussed by the authors has been updated with a new digital bathymetric model of the world ocean floor merged with land topography from publicly available digital elevation models.
Abstract: General Bathymetric Chart of the Oceans (GEBCO) has released the GEBCO_2014 grid, a new digital bathymetric model of the world ocean floor merged with land topography from publicly available digital elevation models. GEBCO_2014 has a grid spacing of 30 arc seconds, and updates the 2010 release (GEBCO_08) by incorporating new versions of regional bathymetric compilations from the International Bathymetric Chart of the Arctic Ocean (IBCAO), the International Bathymetric Chart of the Southern Ocean (IBCSO), the Baltic Sea Bathymetry Database (BSBD), and data from the European Marine Observation and Data network (EMODnet) bathymetry portal, among other data sources. Approximately 33% of ocean grid cells (not area) have been updated in GEBCO_2014 from the previous version, including both new interpolated depth values and added soundings. These updates include large amounts of multibeam data collected using modern equipment and navigation techniques, improving portrayed details of the world ocean floor. Of all non-land grid cells in GEBCO_2014, approximately 18% are based on bathymetric control data, i.e., primarily multibeam and single beam soundings, or pre-prepared grids which may contain some interpolated values. The GEBCO_2014 grid has a mean and median depth of 3897 m and 3441 m, respectively. Hypsometric analysis reveals that 50% of the Earth's surface is comprised of seafloor located 3200 m below mean sea level, and that ~900 ship-years of surveying would be needed to obtain complete multibeam coverage of the world's oceans.

647 citations

Journal ArticleDOI

383 citations


Cites background from "The Quest for the Africa-Eurasia pl..."

  • ...These consist of predominantly high-resolution multibeam data acquired between 2000 and 2006, gridded at 100-m resolution (Zitellini et al., 2009)....

    [...]

Journal ArticleDOI
TL;DR: In this article, an initial SE-dipping slow subduction of the Ligurian-Tethys realm beneath the Malaguide upper plate unit is proposed as an efficient geodynamic mechanism to structure the arcuate Betic-Rif orogenic system.

234 citations


Cites background from "The Quest for the Africa-Eurasia pl..."

  • ...…in late Tortonian times along the lateral boundaries of the system (Gràcia et al., 2003; Iribarren et al., 2007; Maldonado and Nelson, 1999; Zitellini et al., 2009) although high resolution seismic data suggests active deformation of the accretionary wedge toward the more internal…...

    [...]

  • ...the system (Gràcia et al., 2003; Iribarren et al., 2007; Maldonado and Nelson, 1999; Zitellini et al., 2009) although high resolution seis-...

    [...]

  • ...…is also recognized along the offshore continuation of the front of the Betic–Rif thrust system in the Gulf of Cadiz (Gràcia et al., 2003; Iribarren et al., 2007), although younger compressional events could deform this domain after 8 Ma (e.g., Gutscher et al., 2002; Zitellini et al., 2004, 2009)....

    [...]

Journal ArticleDOI
TL;DR: The Betic-Rif arc is one of the smallest and tightest orogenic arcs on Earth, and together with its extensional hinterland, the Albor´ an Domain, it formed between two colliding continents as mentioned in this paper.
Abstract: The Betic-Rif arc is one of the smallest and tightest orogenic arcs on Earth, and together with its extensional hinterland, the Albor´ an Domain, it formed between two colliding continents. The region provides examples of a range of tectonic processes that are not predictable from the rules of rigid-plate tectonics. The AlborDomain reveals two stages of subduction and accre- tion, with different thermal histories and mechanisms of exhumation. The external Betic-Rif thrust belt illustrates four processes that create an arcuate orogen and a strongly divergent pattern of slip vectors: (a) the interaction between the westward moving Albor´ an Domain and the converging African and Iberian margins, (b) divergence in relative motion due to extension within the Albor´ an Domain, (c) slip partitioning onto strike-slip faults within the arc, and (d ) vertical-axis rotations resulting from oblique convergence on the limbs of the arc.

223 citations


Cites background from "The Quest for the Africa-Eurasia pl..."

  • ...…depth 1969 Horseshoe 1954 Granada Normal Right slip Left slip 5 mm/year YF NF PF LF CF 100 km Figure 5 Active tectonics of the Alborán region and the Gulf of Cadiz, showing currently active or potentially active faults by type (see upper-left key) (after Comas et al. 1999, Zitellini et al. 2009)....

    [...]

  • ...Morphological and seismological evidence for active slip has been documented for the following faults and faults sets (Figure 5): The sinistrally transpressive faults of the trans-Alborán shear zone (Stich et al. 2006), which form an en echelon set including the northeast- to north-trending Lorca and Palomares faults in the Betic Cordillera, the east-northeast-trending Alborán Ridge in the Alborán Sea, and the Nekkor fault in the Rif A set of linked normal and east to west dextral faults that extends from near Almerı́a on the Spanish coast westward into the Granada Basin (Martı́nez-Martı́nez et al. 2006) The east-southeast-trending dextral Yussuf fault, which cuts across the eastern part of the floor of the Alborán Sea (Watts et al. 1993) A set of east-southeast-trending dextral faults that extend from the eastern termination of the Azores Fracture Zone across the floor of the Gulf of Cádiz (the SWIM faults of Zitellini et al. 2009) The conjugate pattern of southwest-trending sinistral faults and east-southeast-trending dextral faults is consistent with northwest-directed Africa-Iberia contraction....

    [...]

  • ...Additional evidence cited in support of this hypothesis includes the accretionary wedge west of Gibraltar (see above) as well as tomographic data believed to indicate that a slab of oceanic lithosphere dips steeply eastward from Gibraltar down to the locus of the deep earthquakes beneath Granada (Gutscher et al. 2002)....

    [...]

  • ...According to Diaz et al. (2010), SKS splitting orientations appear to track around the Gibraltar arc, and the authors interpreted www.annualreviews.org • Betic-Rif Arc 14.9 the pattern as supporting the existence of a subducted slab....

    [...]

  • ...…dextral faults that extend from the eastern termination of the Azores Fracture Zone across the floor of the Gulf of Cádiz (the SWIM faults of Zitellini et al. 2009) The conjugate pattern of southwest-trending sinistral faults and east-southeast-trending dextral faults is…...

    [...]

Journal ArticleDOI
TL;DR: In this paper, a comprehensive overview of the evolution of the Late Miocene gateways and the nature of Mediterranean-Atlantic exchange as deduced from published studies focussed both on the sediments preserved within the fossil corridors and inferences that can be derived from data in the adjacent basins.

174 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, a series of empirical relationships among moment magnitude (M ), surface rupture length, subsurface rupture length and downdip rupture width, and average surface displacement per event are developed.
Abstract: Source parameters for historical earthquakes worldwide are compiled to develop a series of empirical relationships among moment magnitude ( M ), surface rupture length, subsurface rupture length, downdip rupture width, rupture area, and maximum and average displacement per event. The resulting data base is a significant update of previous compilations and includes the additional source parameters of seismic moment, moment magnitude, subsurface rupture length, downdip rupture width, and average surface displacement. Each source parameter is classified as reliable or unreliable, based on our evaluation of the accuracy of individual values. Only the reliable source parameters are used in the final analyses. In comparing source parameters, we note the following trends: (1) Generally, the length of rupture at the surface is equal to 75% of the subsurface rupture length; however, the ratio of surface rupture length to subsurface rupture length increases with magnitude; (2) the average surface displacement per event is about one-half the maximum surface displacement per event; and (3) the average subsurface displacement on the fault plane is less than the maximum surface displacement but more than the average surface displacement. Thus, for most earthquakes in this data base, slip on the fault plane at seismogenic depths is manifested by similar displacements at the surface. Log-linear regressions between earthquake magnitude and surface rupture length, subsurface rupture length, and rupture area are especially well correlated, showing standard deviations of 0.25 to 0.35 magnitude units. Most relationships are not statistically different (at a 95% significance level) as a function of the style of faulting: thus, we consider the regressions for all slip types to be appropriate for most applications. Regressions between magnitude and displacement, magnitude and rupture width, and between displacement and rupture length are less well correlated and have larger standard deviation than regressions between magnitude and length or area. The large number of data points in most of these regressions and their statistical stability suggest that they are unlikely to change significantly in response to additional data. Separating the data according to extensional and compressional tectonic environments neither provides statistically different results nor improves the statistical significance of the regressions. Regressions for cases in which earthquake magnitude is either the independent or the dependent parameter can be used to estimate maximum earthquake magnitudes both for surface faults and for subsurface seismic sources such as blind faults, and to estimate the expected surface displacement along a fault for a given size earthquake.

6,160 citations

Journal ArticleDOI
26 Sep 1997-Science
TL;DR: In this paper, a digital bathymetric map of the oceans with a horizontal resolution of 1 to 12 kilometers was derived by combining available depth soundings with high-resolution marine gravity information from the Geosat and ERS-1 spacecraft.
Abstract: A digital bathymetric map of the oceans with a horizontal resolution of 1 to 12 kilometers was derived by combining available depth soundings with high-resolution marine gravity information from the Geosat and ERS-1 spacecraft. Previous global bathymetric maps lacked features such as the 1600-kilometer-long Foundation Seamounts chain in the South Pacific. This map shows relations among the distributions of depth, sea floor area, and sea floor age that do not fit the predictions of deterministic models of subsidence due to lithosphere cooling but may be explained by a stochastic model in which randomly distributed reheating events warm the lithosphere and raise the ocean floor.

4,433 citations

Journal ArticleDOI
TL;DR: In this article, the optimal recalibration of NUVEL-1 is proposed to multiply the angular velocities by a constant, α, of 0.9562, which is a compromise among slightly different calibrations appropriate for slow, medium, and fast rates of seafloor spreading.
Abstract: Recent revisions to the geomagnetic time scale indicate that global plate motion model NUVEL-1 should be modified for comparison with other rates of motion including those estimated from space geodetic measurements. The optimal recalibration, which is a compromise among slightly different calibrations appropriate for slow, medium, and fast rates of seafloor spreading, is to multiply NUVEL-1 angular velocities by a constant, α, of 0.9562. We refer to this simply recalibrated plate motion model as NUVEL-1A, and give correspondingly revised tables of angular velocities and uncertainties. Published work indicates that space geodetic rates are slower on average than those calculated from NUVEL-1 by 6±1%. This average discrepancy is reduced to less than 2% when space geodetic rates are instead compared with NUVEL-1A.

3,359 citations

Journal ArticleDOI
TL;DR: In this article, a preliminary model for the Cenozoic kinematic evolution of the western Mediterranean oceanic basins and their peripheral orogens is presented, which integrates the motion of Africa relative to Europe based upon a new study of Atlantic fracture zones using SEASAT data and the Lamont-Doherty magnetic anomaly database.
Abstract: Summary The kinematic understanding of the relationship between relative plate motion and the structure of orogenic belts depends upon a knowledge of relative plate motion across the plate boundary system, the relative motion of small blocks and flakes within the system, an evaluation of orogenic body forces, and an understanding of the thermomechanical evolution of the upper part of the orogenic lithosphere in determining strength and detachment levels. We have built a preliminary model for the Cenozoic kinematic evolution of the western Mediterranean oceanic basins and their peripheral orogens that integrates (1) the motion of Africa relative to Europe based upon a new study of Atlantic fracture zones using SEASAT data and the Lamont-Doherty magnetic anomaly database, (2) a new interpretation of the rotation of Corsica/Sardinia and the opening of the Balearic and Tyrrhenian oceanic basins, (3) sedimentary facies sequences in the Apennines, Calabria, and Sicily, and (4) Apennine/Calabrian structure and structural sequence.

1,545 citations

Journal ArticleDOI
TL;DR: A detailed assembly of the outlines of the continents around the North and central Atlantic, before the initial dispersion of Gondwanaland in Early Jurassic times, is presented in this paper.
Abstract: It is contended that the Late Triassic to present-day gross evolution of the Alpine system in the Mediterranean region has been the result of activity along an evolving network of accreting, transform, and subducting plate boundaries between the large stable cratons of Europe and Africa. A refined assembly of the outlines of the continents around the North and central Atlantic, before the initial dispersion of Gondwanaland in Early Jurassic times, is presented. By considering geologic facies, structural fabric, and paleomagnetic criteria, the smaller continental fragments now found within the Alpine system are restored to their proposed initial positions relative to each other in the reconstruction offered. The motion of the major plate of Africa relative to Europe, commencing with the initial continental fragmentation, is documented by analysis of the sea-floor spreading history of the Atlantic Ocean, with the assumption that plate accretion there has occurred between torsionally rigid lithospheric plates. By the computerized fitting of well-defined and well-dated key pairs of symmetric magnetic anomaly lineations back together by a series of finite rotations, the relative position of North America to both Europe and Africa has been determined for the following times: 180 m.y. (Toarcian Stage, Early Jurassic); 148 m.y. (Kimmeridgian Stage, Late Jurassic); 80 m.y. (Santonian Stage, Late Cretaceous); 63 m.y. (Danian Stage, Paleocene); 53 m.y. (Ypresian Stage, Eocene); and 9 m.y. (Tortonian Stage, Miocene). From these positions, a series of rotation poles presumed to describe the stepwise motion of Africa relative to Europe were computed. The motions of the smaller intervening microplates have been inferred from the style of tectonic deformation on their borders, and these motions have been constrained to satisfy both changes in paleo-latitude with time and progressive rotations relative to the large macroplates that can be deduced from paleomagnetic measurements. The evolution of Tethys does not involve a single simple plate boundary between Europe and Africa, as has been envisioned previously, but, instead, a constantly evolving mosaic of subsiding continental margins, migrating mid-oceanic ridges, transform faults, trenches, island arcs, and marginal seas (back-arc basins). The periods of passive-continental margin development are recognized by a transgressive facies of platform carbonate rocks and thick prisms of continental-rise type sedimentation; accreting ridges by ultramafic rocks, gabbro, pillow basalt, deep-sea pelagic ooze, and abyssal red clay of the ophiolite suite; trenches by a migrating series of progressively younger linear flysch troughs whose immature mineral composition reflects nearby andesitic and metamorphic source terrains; the arcs themselves by calc-alkaline volcanism and the intrusion of silicic to intermediate plutons; the polarities of these arcs by the direction of overthrust nappe sheets and gradients in the ratio of potash to silica in the extrusives; their orientation by paired belts of high T and P and high P-T metamorphics; and finally the spreading back-arc basins by outpourings of basaltic magmas and evidence of flipping Benioff planes. A compilation of eight phases or chapters in Atlantic spreading history are outlined, which are based on the recognition of discrete differences and (or) relative motion between the continents bordering the Atlantic. All of these changes are reflected in the Tethys by reorganizations of the intervening plate boundaries and, we believe, are most explicitly recorded in the deformational history of the subducting zones. A montage of geometrically assembled plate-boundary interpretations are pictorially displayed as time-lapse frames of the evolving Alpine system. The montage begins with the Late Triassic (pre-Atlantic) setting of the Tethys 1 Ocean and extends to the present through nine phases of Tethyan history. Each phase is recognized on the basis of the age of intrusion and extrusion of basic lavas in ophiolite complexes, which mark the creation of new oceanic areas by both axial accretion in rift valleys of mid-oceanic ridges between rigid plates or by a more uncertain type of spreading in basins behind active island arcs. All the schemes presented are best estimates of the gross geometrical arrangements at discrete time intervals and should be treated as merely educated guesses. Despite the fact that we only have rigorous constraints for the relative positions of the nondeformed forelands of Europe and Africa, our models nevertheless imply that the motions of the larger plates will, by and large, dictate the general behavior of the smaller microplates through the particular styles of deformation set up along the adjoining plate boundaries. The Tethys 1 Ocean, located between Africa and Europe in Triassic times, has been almost entirely swallowed up in subduction zones of the Major Caucasus Mountains along its former northern margin and in similar zones of the Pontides and Minor Caucasus along its southern margin. The only remnants of Tethys 1 are the areas of oceanic crust in the Black and South Caspian Seas. There is considerable evidence to suggest that the Tethys 1 Ocean had an actively spreading ridge. Some tens of millions of years prior to the opening of the central North Atlantic, a branch of this ridge system entered into the Vardar Zone of eastern Greece and broke off fragments of northeast North Africa to initiate the development of the present-day Ionian and Levantine Basins of the eastern Mediterranean. Additional fragments (the Moroccan and Oranaise Meseta) were ruptured from northwest Africa following its separation from North America. The intervening Jurassic Atlas, seaway developed along an accreting plate boundary extending from the eastern Tethys to the crest of the embryonic Mid-Atlantic Ridge where it formed a migrating triple junction whose trace, we believe, follows the trend of the New England seamount chain. The western Mediterranean basins of the Alboran, Balearic, and Tyrrhenian Seas are very much younger, being initially opened in the early Miocene as a string of back-arc marginal seas behind the developing Apennine, Tel Atlas, and Rif suture zone that today marks the sites of subduction of Jurassic and Lower Cretaceous oceanic crust. The contemporary Alpine system displays a spectrum of stages in the building of mountain belts. Embryonic nappes within the Mediterranean Ridge in proximity to melange zones of the inner wall of the Hellenic Trench are, perhaps, signs of the initial deformation of sedimentary passengers on oceanic crust arriving at a subduction zone. Total closure of an ocean followed by the partial consumption of a passive continental margin leads to events such as the tectonic emplacement of crystalline basement nappes of the European “chaine calcaire” onto northwest Africa. Arc-continent collisions of this type which have then been succeeded by total destruction of marginal back-arc basins are recognizable in the Hellenides and Pontides. There are, as well, collisions that have not involved the disappearance of large oceanic areas; these are most apparent in the particular tectonic style of the Pyrenees and High Atlas Mountains.

1,538 citations