scispace - formally typeset
Search or ask a question
Journal ArticleDOI

The regulation of mitochondrial morphology: intricate mechanisms and dynamic machinery.

01 Oct 2011-Cellular Signalling (Cell Signal)-Vol. 23, Iss: 10, pp 1534-1545
TL;DR: This review focuses on the current understanding of the mitochondrial morphology machinery in cell homeostasis, apoptosis and neurodegeneration, and the post translational modifications that regulate these processes.
About: This article is published in Cellular Signalling.The article was published on 2011-10-01. It has received 252 citations till now. The article focuses on the topics: mitochondrial fusion & Mitochondrion.
Citations
More filters
Journal Article
TL;DR: Parl-associated rhomboid-like (PARL-like) as mentioned in this paper is an inner mitochondrial membrane rhomboids of unknown function, whose yeast ortholog is involved in mitochondrial fusion.

616 citations

Journal ArticleDOI
TL;DR: In this article, the authors identified a mammalian protein called hFis1, which is the orthologue of the yeast Fis1p known to participate in yeast mitochondrial division, and when overexpressed in various cell types, localized to the outer mitochondrial membrane and induced mitochondrial fission.

562 citations

Journal ArticleDOI
TL;DR: Fragmented mitochondria are frequently found in resting cells, and mitochondrial fission plays an important role in the removal of damaged organelles by autophagy, which contributes to maintenance of mitochondrial function and optimize bioenergetic capacity.

548 citations

Journal ArticleDOI
TL;DR: Mitochondria are membrane bound organelles present in almost all eukaryotic cells and contribute to many processes central to cellular function and dysfunction including calcium signalling, cell growth and differentiation, cell cycle control and cell death.

508 citations

Journal ArticleDOI
TL;DR: There is a growing body of evidence to suggest that impaired mitochondrial function may affect key cellular processes, thereby altering synaptic functioning and contributing to the atrophic changes that underlie the deteriorating long-term course of these illnesses.
Abstract: Major psychiatric illnesses such as mood disorders and schizophrenia are chronic, recurrent mental illnesses that affect the lives of millions of individuals. Although these disorders have traditionally been viewed as 'neurochemical diseases', it is now clear that they are associated with impairments of synaptic plasticity and cellular resilience. Although most patients with these disorders do not have classic mitochondrial disorders, there is a growing body of evidence to suggest that impaired mitochondrial function may affect key cellular processes, thereby altering synaptic functioning and contributing to the atrophic changes that underlie the deteriorating long-term course of these illnesses. Enhancing mitochondrial function could represent an important avenue for the development of novel therapeutics and also presents an opportunity for a potentially more efficient drug-development process.

394 citations

References
More filters
Journal ArticleDOI
TL;DR: The pathological findings in 100 patients diagnosed prospectively by a group of consultant neurologists as having idiopathic Parkinson's disease are reported, and these observations call into question current concepts of Parkinson's Disease as a single distinct morbid entity.
Abstract: Few detailed clinico-pathological correlations of Parkinson's disease have been published. The pathological findings in 100 patients diagnosed prospectively by a group of consultant neurologists as having idiopathic Parkinson's disease are reported. Seventy six had nigral Lewy bodies, and in all of these Lewy bodies were also found in the cerebral cortex. In 24 cases without Lewy bodies, diagnoses included progressive supranuclear palsy, multiple system atrophy, Alzheimer's disease, Alzheimer-type pathology, and basal ganglia vascular disease. The retrospective application of recommended diagnostic criteria improved the diagnostic accuracy to 82%. These observations call into question current concepts of Parkinson's disease as a single distinct morbid entity.

9,411 citations

Journal ArticleDOI
19 Oct 2006-Nature
TL;DR: Treatments targeting basic mitochondrial processes, such as energy metabolism or free-radical generation, or specific interactions of disease-related proteins with mitochondria hold great promise in ageing-related neurodegenerative diseases.
Abstract: Many lines of evidence suggest that mitochondria have a central role in ageing-related neurodegenerative diseases. Mitochondria are critical regulators of cell death, a key feature of neurodegeneration. Mutations in mitochondrial DNA and oxidative stress both contribute to ageing, which is the greatest risk factor for neurodegenerative diseases. In all major examples of these diseases there is strong evidence that mitochondrial dysfunction occurs early and acts causally in disease pathogenesis. Moreover, an impressive number of disease-specific proteins interact with mitochondria. Thus, therapies targeting basic mitochondrial processes, such as energy metabolism or free-radical generation, or specific interactions of disease-related proteins with mitochondria, hold great promise.

5,368 citations

Journal ArticleDOI
TL;DR: It is shown that Parkin is selectively recruited to dysfunctional mitochondria with low membrane potential in mammalian cells and this recruitment promotes autophagy of damaged mitochondria and implicate a failure to eliminate dysfunctional mitochondira in the pathogenesis of Parkinson's disease.
Abstract: Loss-of-function mutations in Park2, the gene coding for the ubiquitin ligase Parkin, are a significant cause of early onset Parkinson's disease. Although the role of Parkin in neuron maintenance is unknown, recent work has linked Parkin to the regulation of mitochondria. Its loss is associated with swollen mitochondria and muscle degeneration in Drosophila melanogaster, as well as mitochondrial dysfunction and increased susceptibility to mitochondrial toxins in other species. Here, we show that Parkin is selectively recruited to dysfunctional mitochondria with low membrane potential in mammalian cells. After recruitment, Parkin mediates the engulfment of mitochondria by autophagosomes and the selective elimination of impaired mitochondria. These results show that Parkin promotes autophagy of damaged mitochondria and implicate a failure to eliminate dysfunctional mitochondria in the pathogenesis of Parkinson's disease.

3,413 citations

Journal ArticleDOI
21 May 2004-Science
TL;DR: The identification of two homozygous mutations affecting the PINK1 kinase domain in three consanguineous PARK6 families provide a direct molecular link between mitochondria and the pathogenesis of PD.
Abstract: Parkinson's disease (PD) is a neurodegenerative disorder characterized by degeneration of dopaminergic neurons in the substantia nigra We previously mapped a locus for a rare familial form of PD to chromosome 1p36 (PARK6) Here we show that mutations in PINK1 (PTEN-induced kinase 1) are associated with PARK6 We have identified two homozygous mutations affecting the PINK1 kinase domain in three consanguineous PARK6 families: a truncating nonsense mutation and a missense mutation at a highly conserved amino acid Cell culture studies suggest that PINK1 is mitochondrially located and may exert a protective effect on the cell that is abrogated by the mutations, resulting in increased susceptibility to cellular stress These data provide a direct molecular link between mitochondria and the pathogenesis of PD

3,224 citations

Journal ArticleDOI
TL;DR: The authors suggest that PINK1 and Parkin form a pathway that senses damaged mitochondria and selectively targets them for degradation.
Abstract: Loss-of-function mutations in PINK1 and Parkin cause parkinsonism in humans and mitochondrial dysfunction in model organisms. Parkin is selectively recruited from the cytosol to damaged mitochondria to trigger their autophagy. How Parkin recognizes damaged mitochondria, however, is unknown. Here, we show that expression of PINK1 on individual mitochondria is regulated by voltage-dependent proteolysis to maintain low levels of PINK1 on healthy, polarized mitochondria, while facilitating the rapid accumulation of PINK1 on mitochondria that sustain damage. PINK1 accumulation on mitochondria is both necessary and sufficient for Parkin recruitment to mitochondria, and disease-causing mutations in PINK1 and Parkin disrupt Parkin recruitment and Parkin-induced mitophagy at distinct steps. These findings provide a biochemical explanation for the genetic epistasis between PINK1 and Parkin in Drosophila melanogaster. In addition, they support a novel model for the negative selection of damaged mitochondria, in which PINK1 signals mitochondrial dysfunction to Parkin, and Parkin promotes their elimination.

2,404 citations