scispace - formally typeset
Search or ask a question

The rise of low-cost sensing for managing air pollution in cities

TL;DR: In this article, the authors illustrate the drivers behind current rises in the use of low-cost sensors for air pollution management in cities, whilst addressing the major challenges for their effective implementation.
Abstract: Ever growing populations in cities are associated with a major increase in road vehicles and air pollution. The overall high levels of urban air pollution have been shown to be of a significant risk to city dwellers. However, the impacts of very high but temporally and spatially restricted pollution, and thus exposure, are still poorly understood. Conventional approaches to air quality monitoring are based on networks of static and sparse measurement stations. However, these are prohibitively expensive to capture tempo-spatial heterogeneity and identify pollution hotspots, which is required for the development of robust real-time strategies for exposure control. Current progress in developing low-cost micro-scale sensing technology is radically changing the conventional approach to allow real-time information in a capillary form. But the question remains whether there is value in the less accurate data they generate. This article illustrates the drivers behind current rises in the use of low-cost sensors for air pollution management in cities, whilst addressing the major challenges for their effective implementation.
Citations
More filters
01 Jul 2018
TL;DR: In this article, the authors conducted a comprehensive literature search including both the scientific and grey literature, and concluded that there is no clear answer to the question, due to a lack of: sensor/monitor manufacturers' quantitative specifications of performance, consensus regarding recommended end-use and associated minimal performance targets of these technologies, and the ability of the prospective users to formulate the requirements for their applications, or conditions of the intended use.
Abstract: Over the past decade, a range of sensor technologies became available on the market, enabling a revolutionary shift in air pollution monitoring and assessment. With their cost of up to three orders of magnitude lower than standard/reference instruments, many avenues for applications have opened up. In particular, broader participation in air quality discussion and utilisation of information on air pollution by communities has become possible. However, many questions have been also asked about the actual benefits of these technologies. To address this issue, we conducted a comprehensive literature search including both the scientific and grey literature. We focused upon two questions: (1) Are these technologies fit for the various purposes envisaged? and (2) How far have these technologies and their applications progressed to provide answers and solutions? Regarding the former, we concluded that there is no clear answer to the question, due to a lack of: sensor/monitor manufacturers' quantitative specifications of performance, consensus regarding recommended end-use and associated minimal performance targets of these technologies, and the ability of the prospective users to formulate the requirements for their applications, or conditions of the intended use. Numerous studies have assessed and reported sensor/monitor performance under a range of specific conditions, and in many cases the performance was concluded to be satisfactory. The specific use cases for sensors/monitors included outdoor in a stationary mode, outdoor in a mobile mode, indoor environments and personal monitoring. Under certain conditions of application, project goals, and monitoring environments, some sensors/monitors were fit for a specific purpose. Based on analysis of 17 large projects, which reached applied outcome stage, and typically conducted by consortia of organizations, we observed that a sizable fraction of them (~ 30%) were commercial and/or crowd-funded. This fact by itself signals a paradigm change in air quality monitoring, which previously had been primarily implemented by government organizations. An additional paradigm-shift indicator is the growing use of machine learning or other advanced data processing approaches to improve sensor/monitor agreement with reference monitors. There is still some way to go in enhancing application of the technologies for source apportionment, which is of particular necessity and urgency in developing countries. Also, there has been somewhat less progress in wide-scale monitoring of personal exposures. However, it can be argued that with a significant future expansion of monitoring networks, including indoor environments, there may be less need for wearable or portable sensors/monitors to assess personal exposure. Traditional personal monitoring would still be valuable where spatial variability of pollutants of interest is at a finer resolution than the monitoring network can resolve.

138 citations

Journal Article
TL;DR: Forouzanfar et al. as discussed by the authors provide a review of the new air pollution sensing methods to determine indoor air quality and discuss how real-time sensing could bring a paradigm shift in controlling the concentration of key air pollutants in billions of urban houses worldwide.
Abstract: Household air pollution is ranked the 9th largest Global Burden of Disease risk (Forouzanfar et al., The Lancet 2015). People, particularly urban dwellers, typically spend over 90% of their daily time indoors, where levels of air pollution often surpass those of outdoor environments. Indoor air quality (IAQ) standards and approaches for assessment and control of indoor air require measurements of pollutant concentrations and thermal comfort using conventional instruments. However, the outcomes of such measurements are usually averages over long integrated time periods, which become available after the exposure has already occurred. Moreover, conventional monitoring is generally incapable of addressing temporal and spatial heterogeneity of indoor air pollution, or providing information on peak exposures that occur when specific indoor sources are in operation. This article provides a review of the new air pollution sensing methods to determine IAQ and discusses how real-time sensing could bring a paradigm shift in controlling the concentration of key air pollutants in billions of urban houses worldwide. However, we also show that besides the opportunities, challenges still remain in terms of maturing technologies, or data mining and their interpretation. Moreover, we discuss further research and essential development needed to close gaps between what is available today and needed tomorrow. In particular, we demonstrate that awareness of IAQ risks and availability of appropriate regulation are lagging behind the technologies.

68 citations

Journal ArticleDOI
01 Jan 2022-Sensors
TL;DR: This article summarizes the existing studies on the state-of-the-art of LCS for AQM, and conceptualizes a step by step procedure to establish a sustainable AQM setup with LCS that can produce reliable data.
Abstract: Low-cost sensors (LCS) are becoming popular for air quality monitoring (AQM). They promise high spatial and temporal resolutions at low-cost. In addition, citizen science applications such as personal exposure monitoring can be implemented effortlessly. However, the reliability of the data is questionable due to various error sources involved in the LCS measurement. Furthermore, sensor performance drift over time is another issue. Hence, the adoption of LCS by regulatory agencies is still evolving. Several studies have been conducted to improve the performance of low-cost sensors. This article summarizes the existing studies on the state-of-the-art of LCS for AQM. We conceptualize a step by step procedure to establish a sustainable AQM setup with LCS that can produce reliable data. The selection of sensors, calibration and evaluation, hardware setup, evaluation metrics and inferences, and end user-specific applications are various stages in the LCS-based AQM setup we propose. We present a critical analysis at every step of the AQM setup to obtain reliable data from the low-cost measurement. Finally, we conclude this study with future scope to improve the availability of air quality data.

33 citations

01 Jan 2014
TL;DR: In this paper, the authors reviewed some fundamental drivers of UFP emissions and dispersion, and highlighted unresolved challenges, as well as recommendations to ensure sustainable urban development whilst minimising any possible adverse health impacts.
Abstract: Ultrafine particles (UFP; diameter less than 100 nm) are ubiquitous in urban air, and an acknowledged risk to human health. Globally, the major source for urban outdoor UFP concentrations is motor traffic. Ongoing trends towards urbanisation and expansion of road traffic are anticipated to further increase population exposure to UFPs. Numerous experimental studies have characterised UFPs in individual cities, but an integrated evaluation of emissions and population exposure is still lacking. Our analysis suggest that average exposure to outdoor UFPs in Asian cities is about four-times larger than those in European cities but impacts on human health are largely unknown. This article reviews some fundamental drivers of UFP emissions and dispersion, and highlights unresolved challenges, as well as recommendations to ensure sustainable urban development whilst minimising any possible adverse health impacts.

32 citations

01 Jun 2016
TL;DR: In this paper, a taxi fleet of over 15,000 vehicles was analyzed with the aim of predicting air pollution emissions for Singapore, and the results showed that highly localized areas of elevated emissions levels were identified, with a spatio-temporal precision not possible with previously used methods for estimating emissions.
Abstract: Air pollution related to traffic emissions pose an especially significant problem in cities; this is due to its adverse impact on human health and well-being. Previous studies which have aimed to quantify emissions from the transportation sector have been limited by either simulated or coarsely resolved traffic volume data. Emissions inventories form the basis of urban pollution models, therefore in this study, Global Positioning System (GPS) trajectory data from a taxi fleet of over 15,000 vehicles were analyzed with the aim of predicting air pollution emissions for Singapore. This novel approach enabled the quantification of instantaneous drive cycle parameters in high spatio-temporal resolution, which provided the basis for a microscopic emissions model. Carbon dioxide (CO2), nitrogen oxides (NOx), volatile organic compounds (VOCs) and particulate matter (PM) emissions were thus estimated. Highly localized areas of elevated emissions levels were identified, with a spatio-temporal precision not possible with previously used methods for estimating emissions. Relatively higher emissions areas were mainly concentrated in a few districts that were the Singapore Downtown Core area, to the north of the central urban region and to the east of it. Daily emissions quantified for the total motor vehicle population of Singapore were found to be comparable to another emissions dataset. Results demonstrated that high-resolution spatio-temporal vehicle traces detected using GPS in large taxi fleets could be used to infer highly localized areas of elevated acceleration and air pollution emissions in cities, and may become a complement to traditional emission estimates, especially in emerging cities and countries where reliable fine-grained urban air quality data is not easily available. This is the first study of its kind to investigate measured microscopic vehicle movement in tandem with microscopic emissions modeling for a substantial study domain.

21 citations

References
More filters
Book ChapterDOI
01 Jan 2020
TL;DR: A dynamic programming (DP) model is developed that determines the optimal selection strategy, after defining different parameters, at a minimized total cost for optimal air pollution control technology selection for an urban metropolitan area.
Abstract: Increasing population, rapid urbanization and hasty industrialization are assisting gradual shift in human residence from rural to urban. Any city trying to become a smart and sustainable one must provide a better quality of life for its citizens and address the problem of degrading air quality and increasing pollutant emissions. The solution for these problems requires selection and decision-making among a number of candidate emission-control-alternatives that need to satiate a number of technical constraints, policy criteria and regulations. For a given pollutant and emission source, a number of control technologies are available; hence, it is coveted to choose the best combination among them to reduce emissions to a desired standard. Because of its applicability, flexibility and ease of computation in solving large-scale practical problems, dynamic programming-based approach appears to be the appropriate and feasible choice for optimal air pollution control technology selection for an urban metropolitan area. Current study develops a dynamic programming (DP) model that determines the optimal selection strategy, after defining different parameters, at a minimized total cost. The usage and applicability of the proposed model were illustrated with a representative case study of a simulated city with three major sources of pollution. It is inferred that DP is ideal for the ‘multiple sources—multiple control technologies—single air pollutant’ optimization problem.

3 citations

29 Mar 2019
TL;DR: In this article, a low-cost particulate matter (PM) sensor and GPS receiver based portable device was developed to determine the atmospheric PM concentration and distribution, hotspots can be identified, the air quality characteristics of crawled areas and routes can be determined.
Abstract: Air quality measurements were conducted at rural and urban environment with a low-cost particulate matter (PM) sensor and GPS receiver based portable device, which was developed to determine the atmospheric PM concentration and distribution. Using the PM sensors and GPS receiver data, hotspots can be identified, the air quality characteristics of crawled areas and routes can be determined. Suggestions was made to improve the accuracy of the measurement.

3 citations

Journal ArticleDOI
TL;DR: In this article, the authors used a low-cost, highly portable instrument package to measure surface-based aerosol optical depth (AOD), real-time surface PM2.5 concentrations using a third-party optical sensor, and time-integrated PM 2.5 concentration and composition by collecting PM2.5 onto Teflon filters.
Abstract: Exposure to particulate air pollution is a major cause of mortality and morbidity worldwide. In developing countries, the combustion of solid fuels is widely used as a source of energy, and this process can produce exposure to harmful levels of particulate matter with diameters smaller than 2.5 microns (PM2.5). However, as countries develop, solid fuel may be replaced by centralized coal combustion, and vehicles burning diesel and gasoline may become common, changing the concentration and composition of PM2.5, which ultimately changes the population health effects. Therefore, there is a continuous need for in-situ monitoring of air pollution in developing nations, both to estimate human exposure and to monitor changes in air quality. In this study, we present measurements from a 5-week field experiment in Palapye, Botswana. We used a low-cost, highly portable instrument package to measure surface-based aerosol optical depth (AOD), real-time surface PM2.5 concentrations using a third-party optical sensor, and time-integrated PM2.5 concentration and composition by collecting PM2.5 onto Teflon filters. Furthermore, we employed other low-cost measurements of real-time black carbon and time-integrated ammonia to help interpret the observed PM2.5 composition and concentration information during the field experiment. We found that the average PM2.5 concentration (9.5 µg∙m−3) was below the World Health Organization (WHO) annual limit, and this concentration closely agrees with estimates from the Global Burden of Disease (GBD) report estimates for this region. Sulfate aerosol and carbonaceous aerosol, likely from coal combustion and biomass burning, respectively, were the main contributors to PM2.5 by mass (33% and 27% of total PM2.5 mass, respectively). While these observed concentrations were on average below WHO guidelines, we found that the measurement site experienced higher concentrations of aerosol during first half our measurement period (14.5 µg∙m−3), which is classified as “moderately unhealthy” according to the WHO standard.

3 citations

Book ChapterDOI
01 Jan 2021
TL;DR: In this paper, the features and trends of micro-sensors for air quality measurements and the utilization of these sensors for long-term monitoring of air pollution are discussed along with the technical issues of the sensors.
Abstract: Recently, the air-quality monitoring system using microsensors have been widely used in various environments, from urban and polluted areas to clean areas (ie, rural) and from ground-based stations to high altitude Several methods of calibration in the laboratory for microsensors have been introduced, and some field observations under ambient atmosphere, indoor, or personal exposure have been tested Vast numbers of those sensors can be deployed simultaneously in different locations to get the spatiotemporal resolution of air-quality data in real-time and online Good agreement between the low-to-medium resolution of particulate sensors and the medium-to-high class of related instruments has been found Furthermore, low sensitivity of gas sensors can still be sensing the fluctuation of gas concentrations in the air This means that microsensors can be used to fill the gap of air-quality data for a better understanding of our environment However, air-quality data from microsensors does not comply with current regulations Therefore, preparing a good sampling line, as well as the measurement chamber, and avoid direct emissions or humid conditions, will make the air-quality data is still valid (with statistical errors) In this chapter, we discussed the features and trends of microsensors for air-quality measurements and the utilization of these sensors for long-term monitoring of air pollution Laboratory-checked methods for the sensors and its field observation are discussed along with the technical issues of these sensors

3 citations