scispace - formally typeset
Search or ask a question
Journal ArticleDOI

The role of databases in support of computational chemistry calculations

01 Oct 1996-Journal of Computational Chemistry (Wiley)-Vol. 17, Iss: 13, pp 1571-1586
TL;DR: It is argued that the ready availability of information pertaining to the applications and theoretical models can substantially increase the likelihood of novice users obtaining the desired accuracy from their calculations while simultaneously making better use of computer resources.
Abstract: A role for electronic structure databases in assisting users of quantum chemistry applications select better model parameters is discussed in light of experiences gained from a software prototype known as the Computational Chemistry Input Assistant (CCIA). It is argued that the ready availability of information pertaining to the applications and theoretical models can substantially increase the likelihood of novice users obtaining the desired accuracy from their calculations while simultaneously making better use of computer resources. Expert users, who find themselves contemplating studies in new areas of research, may also benefit from the proposed tools. For maximum impact, this assistance should be provided while users are actively engaged in preparing calculations. © 1996 by John Wiley & Sons, Inc.
Citations
More filters
Journal ArticleDOI
TL;DR: The Basis Set Exchange has been rewritten, utilizing modern software design and best practices, and the website updated to use the current generation of web development libraries.
Abstract: The Basis Set Exchange (BSE) has been a prominent fixture in the quantum chemistry community. First publicly available in 2007, it is recognized by both users and basis set creators as the de facto source for information related to basis sets. This popular resource has been rewritten, utilizing modern software design and best practices. The basis set data has been separated into a stand-alone library with an accessible API, and the Web site has been updated to use the current generation of web development libraries. The general layout and workflow of the Web site is preserved, while helpful features requested by the user community have been added. Overall, this design should increase adaptability and lend itself well into the future as a dependable resource for the computational chemistry community. This article will discuss the decision to rewrite the BSE, the new architecture and design, and the new features that have been added.

1,016 citations

Journal ArticleDOI
TL;DR: Results on crystal structures, cohesive energies, and solid‐state reaction enthalpies with the modified basis sets, denoted as pob‐TZVP, are compared with selected standard basis sets available from the CRYSTAL basis set database.
Abstract: Consistent basis sets of triple-zeta valence with polarization quality for main group elements and transition metals from row one to three have been derived for periodic quantum-chemical solid-state calculations with the crystalline-orbital program CRYSTAL. They are based on the def2-TZVP basis sets developed for molecules by the Ahlrichs group. Orbital exponents and contraction coefficients have been modified and reoptimized, to provide robust and stable self-consistant field (SCF) convergence for a wide range of different compounds. We compare results on crystal structures, cohesive energies, and solid-state reaction enthalpies with the modified basis sets, denoted as pob-TZVP, with selected standard basis sets available from the CRYSTAL basis set database. The average deviation of calculated lattice parameters obtained with a selected density functional, the hybrid method PW1PW, from experimental reference is smaller with pob-TZVP than with standard basis sets, in particular for metallic systems. The effects of basis set expansion by diffuse and polarization functions were investigated for selected systems.

832 citations

Journal ArticleDOI
TL;DR: In this paper, a first-principles design approach was used to determine that the single-layer group-III monochalcogenides exhibit low formation energies and are suitable for photocatalytic water splitting.
Abstract: The recent synthesis of single-layer GaS and GaSe opens the question of stability for other single-layer group-III monochalcogenides (MX, M = Ga and In, X = S, Se, and Te) and how the dimension reduction affects the properties of these materials. Using a first-principles design approach, we determine that the single-layer group-III monochalcogenides exhibit low formation energies and are suitable for photocatalytic water splitting. First, density-functional calculations using a van der Waals functional reveal that the monochalcogenides have formation energies similar to that of single-layer MoS2, implying the ease of mechanically extracting single-layer monochalcogenides from their layered bulk counterparts. Next, calculations using a hybrid density functional and the quasiparticle many-body G0W0 approximation determine the conduction and valence band edge positions. Comparing the band edge positions with the redox potentials of water shows that single-layer monochalcogenides are potential photocatalysts ...

624 citations

Journal ArticleDOI
TL;DR: A benchmark for force fields is devised in order to test the ability of existing force fields to reproduce some key properties of organic liquids, namely, the density, enthalpy of vaporization, the surface tension, the heat capacity at constant volume and pressure, the isothermal compressibility, the volumetric expansion coefficient, and the static dielectric constant.
Abstract: The chemical composition of small organic molecules is often very similar to amino acid side chains or the bases in nucleic acids, and hence there is no a priori reason why a molecular mechanics force field could not describe both organic liquids and biomolecules with a single parameter set. Here, we devise a benchmark for force fields in order to test the ability of existing force fields to reproduce some key properties of organic liquids, namely, the density, enthalpy of vaporization, the surface tension, the heat capacity at constant volume and pressure, the isothermal compressibility, the volumetric expansion coefficient, and the static dielectric constant. Well over 1200 experimental measurements were used for comparison to the simulations of 146 organic liquids. Novel polynomial interpolations of the dielectric constant (32 molecules), heat capacity at constant pressure (three molecules), and the isothermal compressibility (53 molecules) as a function of the temperature have been made, based on expe...

602 citations

References
More filters
Book
10 Mar 1986
TL;DR: In this paper, the use of theoretical models as an alternative to experiment in making accurate predictions of chemical phenomena is discussed, and the formulation of theoretical molecular orbital models starting from quantum mechanics is discussed.
Abstract: Describes and discusses the use of theoretical models as an alternative to experiment in making accurate predictions of chemical phenomena. Addresses the formulation of theoretical molecular orbital models starting from quantum mechanics, and compares them to experimental results. Draws on a series of models that have already received widespread application and are available for new applications. A new and powerful research tool for the practicing experimental chemist.

8,210 citations

Journal ArticleDOI
TL;DR: TURBOMOLE as discussed by the authors is a program system for SCF that takes full advantage of all discrete point group symmetries and has only modest I/O and background storage requirements.

7,616 citations

Journal ArticleDOI
TL;DR: Three-center approximations to the four-center integrals occurring in ab initio LCAO calculations are investigated in this paper, where significant gains in computer time can be obtained without sacrificing accuracy, if a suitable expansion basis is chosen.

1,474 citations

Journal ArticleDOI
TL;DR: In this article, the resolution of the identify (RI) was used to replace the use of four-index-two-electron integrals with linear combinations of three-index integrals.

1,112 citations

Journal ArticleDOI
TL;DR: In this article, three improvements on the direct selfconsistent field method are proposed and tested which together increase CPU efficiency by about 50% by selective storage of costly integral batches, improved integral bond for prescreening, and decomposition of the current density matrix into a linear combination of previous density matrices.
Abstract: Three improvements on the direct self‐consistent field method are proposed and tested which together increase CPU‐efficiency by about 50%: (i) selective storage of costly integral batches; (ii) improved integral bond for prescreening; (iii) decomposition of the current density matrix into a linear combination of previous density matrices—for which the two‐electron contributions to the Fock matrix are available—and a remainder ΔD, which is minimized; construction of the current Fock matrix only requires processing of the small ΔD which enhances prescreening.

881 citations