scispace - formally typeset
Search or ask a question
Journal ArticleDOI

The role of IL-23 and the IL-23/TH17 immune axis in the pathogenesis and treatment of psoriasis

TL;DR: A better understanding of the IL‐23/TH17 immune axis is vital and will promote the development of additional targets for psoriasis and other inflammatory diseases that share similar genetic aetiology and pathogenetic pathways.
Abstract: Psoriasis is a chronic, immune-mediated disease affecting more than 100 million people worldwide and up to 2.2% of the UK population. The aetiology of psoriasis is thought to originate from an interplay of genetic, environmental, infectious and lifestyle factors. The manner in which genetic and environmental factors interact to contribute to the molecular disease mechanisms has remained elusive. However, the interleukin 23 (IL-23)/T-helper 17 (TH 17) immune axis has been identified as a major immune pathway in psoriasis disease pathogenesis. Central to this pathway is the cytokine IL-23, a heterodimer composed of a p40 subunit also found in IL-12 and a p19 subunit exclusive to IL-23. IL-23 is important for maintaining TH 17 responses, and levels of IL-23 are elevated in psoriatic skin compared with non-lesional skin. A number of agents that specifically inhibit IL-23p19 are currently in development for the treatment of moderate-to-severe plaque psoriasis, with recent clinical trials demonstrating efficacy with a good safety and tolerability profile. These data support the role of this cytokine in the pathogenesis of psoriasis. A better understanding of the IL-23/TH 17 immune axis is vital and will promote the development of additional targets for psoriasis and other inflammatory diseases that share similar genetic aetiology and pathogenetic pathways.
Citations
More filters
Journal ArticleDOI
TL;DR: The immunologic role of interleukin (IL)-17, the major effector cytokine in the pathogenesis of psoriatic disease, is reviewed, along with the rationale for targeting the IL-17 cytokine family (IL-17A, Il-17F, and IL- 17 receptor A) in the treatment of psoriasis and psoratic arthritis.
Abstract: Psoriasis is a chronic, immune-mediated, inflammatory disease that is pathogenically driven by proinflammatory cytokines. This article reviews the immunologic role of interleukin (IL)-17, the major effector cytokine in the pathogenesis of psoriatic disease, along with the rationale for targeting the IL-17 cytokine family (IL-17A, IL-17F, and IL-17 receptor A) in the treatment of psoriasis and psoriatic arthritis. Emerging evidence indicates that major sources of IL-17A in patients with psoriatic disease are mast cells, γδ T cells, αβ T cells, and innate lymphoid cells in lesional skin and synovial fluid. Within the skin and joints, IL-17A acts on cellular targets, including keratinocytes, neutrophils, endothelial cells, fibroblasts, osteoclasts, chondrocytes, and osteoblasts, to stimulate production of various antimicrobial peptides, chemokines, and proinflammatory and proliferative cytokines, which, in turn, promote tissue inflammation and bone remodeling. The critical importance of the IL-23/IL-17A axis to the pathogenesis of psoriatic disease has resulted in many new biologic treatments targeting these cytokines. These biologics dramatically improve skin and joint symptoms in patients with moderate-to-severe psoriasis and psoriatic arthritis.

372 citations

Journal ArticleDOI
TL;DR: The current review emphasizes the aberrant interplay of immune cells and skin-resident keratinocytes in establishing and sustaining inflammatory and immune responses in psoriasis.
Abstract: Psoriasis is a chronic inflammatory skin disease resulting from genetic, epigenetic, environmental, and lifestyle factors. To date, several immunopathogenic mechanisms of psoriasis have been elucidated, and, in the current model, the cross talk between autoreactive T cells and resident keratinocytes generates inflammatory and immune circuits responsible for the initiation, progression, and persistence of the disease. Several autoantigens derived from keratinocytes (i.e., LL37 cathelecidin/nucleic acid complexes, newly generated lipid antigens) have been identified, which may trigger initial activation of T cells, particularly IL-17-producing T cells, T helper (Th)1 and Th22 cells. Hence, lymphokines released in skin lesions are pivotal for keratinocyte activation and production of inflammatory molecules, which in turn lead to amplification of the local immune responses. Intrinsic genetic alterations of keratinocytes in the activation of signal transduction pathways dependent on T-cell-derived cytokines are also fundamental. The current review emphasizes the aberrant interplay of immune cells and skin-resident keratinocytes in establishing and sustaining inflammatory and immune responses in psoriasis.

240 citations


Cites background from "The role of IL-23 and the IL-23/TH1..."

  • ...T-cell infiltrate present in active psoriatic skin establishes a cytokine milieu that dictates specific gene signatures in keratinocytes, which, thus, overexpress several inflammatory mediators amplifying local immune reactions (12, 13)....

    [...]

  • ...J Invest Dermatol (2011) 131(12):2428–37....

    [...]

Journal ArticleDOI
TL;DR: This review comments on epidemiologic, genetic, and mechanistic studies that analyzed the relation between psoriasis and cardiovascular comorbidity, and the hypothesis of Psoriasis potentially being an independent cardiovascular risk factor, driving atherosclerosis via inflammation-induced endothelial dysfunction will be discussed.
Abstract: Psoriasis is a common inflammatory skin disease characterized by the appearance of red scaly plaques that can affect any part of the body. High prevalence, chronicity, disfiguration, disability, and associated comorbidity make it a challenge for clinicians of multiple specialties. Likewise, its complex pathogenesis, comprising inflammation, hyperproliferation, and angioneogenesis, intrigues numerous scientific disciplines, namely, immunology. From a clinical perspective, the severity of psoriasis is highlighted by its increased mortality, with cardiovascular diseases contributing the highest excess risk. From a scientific point of view, psoriasis has to be considered a systemic inflammatory condition, as blood biomarkers of inflammation are elevated and imaging techniques document sites of inflammation beyond the skin. While the association of psoriasis with cardiovascular diseases is now widely accepted, causes and consequences of this association are controversially discussed. This review comments on epidemiologic, genetic, and mechanistic studies that analyzed the relation between psoriasis and cardiovascular comorbidity. The hypothesis of psoriasis potentially being an independent cardiovascular risk factor, driving atherosclerosis via inflammation-induced endothelial dysfunction, will be discussed. Finally, consequences for the management of psoriasis with the objective to reduce the patients' excess cardiovascular risk will be pointed out.

169 citations


Cites background from "The role of IL-23 and the IL-23/TH1..."

  • ...Then, the role of TH17 lymphocytes was stressed in the light of clinical studies documenting the high clinical efficacy of therapies targeting the IL-17 pathway (76)....

    [...]

Journal ArticleDOI
TL;DR: This review sets into context the current knowledge about innate and adaptive immunological processes in psoriasis and other autoimmune or autoinflammatory diseases.
Abstract: Over the past three decades, a considerable body of evidence has highlighted T cells as pivotal culprits in the pathogenesis of psoriasis This includes the association of psoriasis with certain MHC (HLA) alleles, oligoclonal expansion of T cells in some cases, therapeutic response to T cell-directed immunomodulation, the onset of psoriasis following bone marrow transplantation, or induction of psoriasis-like inflammation by T cells in experimental animals There is accumulating clinical and experimental evidence suggesting that both autoimmune and autoinflammatory mechanisms lie at the core of the disease Indeed, some studies suggested antigenic functions of structural proteins, and complexes of self-DNA with cathelicidin (LL37) or melanocytic ADAMTSL5 have been proposed more recently as actual auto-antigens in some cases of psoriasis These findings are accompanied by various immunoregulatory mechanisms, which we increasingly understand and which connect innate and adaptive immunity Specific adaptive autoimmune responses, together with our current view of psoriasis as a systemic inflammatory disorder, raise the question of whether psoriasis may have connections to autoimmune or autoinflammatory disorders elsewhere in the body While such associations have been suspected for many years, compelling mechanistic evidence in support of this notion is still scant This review sets into context the current knowledge about innate and adaptive immunological processes in psoriasis and other autoimmune or autoinflammatory diseases

110 citations

References
More filters
Journal ArticleDOI
11 May 2006-Nature
TL;DR: It is shown that IL-6, an acute phase protein induced during inflammation, completely inhibits the generation of Foxp3+ Treg cells induced by TGF-β, and the data demonstrate a dichotomy in thegeneration of pathogenic (TH17) T cells that induce autoimmunity and regulatory (Foxp3+) T Cells that inhibit autoimmune tissue injury.
Abstract: On activation, T cells undergo distinct developmental pathways, attaining specialized properties and effector functions. T-helper (T(H)) cells are traditionally thought to differentiate into T(H)1 and T(H)2 cell subsets. T(H)1 cells are necessary to clear intracellular pathogens and T(H)2 cells are important for clearing extracellular organisms. Recently, a subset of interleukin (IL)-17-producing T (T(H)17) cells distinct from T(H)1 or T(H)2 cells has been described and shown to have a crucial role in the induction of autoimmune tissue injury. In contrast, CD4+CD25+Foxp3+ regulatory T (T(reg)) cells inhibit autoimmunity and protect against tissue injury. Transforming growth factor-beta (TGF-beta) is a critical differentiation factor for the generation of T(reg) cells. Here we show, using mice with a reporter introduced into the endogenous Foxp3 locus, that IL-6, an acute phase protein induced during inflammation, completely inhibits the generation of Foxp3+ T(reg) cells induced by TGF-beta. We also demonstrate that IL-23 is not the differentiation factor for the generation of T(H)17 cells. Instead, IL-6 and TGF-beta together induce the differentiation of pathogenic T(H)17 cells from naive T cells. Our data demonstrate a dichotomy in the generation of pathogenic (T(H)17) T cells that induce autoimmunity and regulatory (Foxp3+) T cells that inhibit autoimmune tissue injury.

6,643 citations

Journal ArticleDOI
22 Sep 2006-Cell
TL;DR: It is shown that the orphan nuclear receptor RORgammat is the key transcription factor that orchestrates the differentiation of this effector cell lineage of proinflammatory T helper cells and its potential as a therapeutic target in inflammatory diseases is highlighted.

4,616 citations

Journal ArticleDOI
TL;DR: Findings provide a basis for understanding how inhibition of IFN-γ signaling enhances development of pathogenic TH-17 effector cells that can exacerbate autoimmunity.
Abstract: CD4(+) T cells producing interleukin 17 (IL-17) are associated with autoimmunity, although the precise mechanisms that control their development are undefined. Here we present data that challenge the idea of a shared developmental pathway with T helper type 1 (T(H)1) or T(H)2 lineages and instead favor the idea of a distinct effector lineage we call 'T(H)-17'. The development of T(H)-17 cells from naive precursor cells was potently inhibited by interferon-gamma (IFN-gamma) and IL-4, whereas committed T(H)-17 cells were resistant to suppression by T(H)1 or T(H)2 cytokines. In the absence of IFN-gamma and IL-4, IL-23 induced naive precursor cells to differentiate into T(H)-17 cells independently of the transcription factors STAT1, T-bet, STAT4 and STAT6. These findings provide a basis for understanding how inhibition of IFN-gamma signaling enhances development of pathogenic T(H)-17 effector cells that can exacerbate autoimmunity.

4,616 citations

Journal ArticleDOI
TL;DR: Using passive transfer studies, it is confirmed that these IL-23–dependent CD4+ T cells are highly pathogenic and essential for the establishment of organ-specific inflammation associated with central nervous system autoimmunity.
Abstract: Interleukin (IL)-23 is a heterodimeric cytokine composed of a unique p19 subunit, and a common p40 subunit shared with IL-12. IL-12 is important for the development of T helper (Th)1 cells that are essential for host defense and tumor suppression. In contrast, IL-23 does not promote the development of interferon-γ–producing Th1 cells, but is one of the essential factors required for the expansion of a pathogenic CD4+ T cell population, which is characterized by the production of IL-17, IL-17F, IL-6, and tumor necrosis factor. Gene expression analysis of IL-23–driven autoreactive T cells identified a unique expression pattern of proinflammatory cytokines and other novel factors, distinguishing them from IL-12–driven T cells. Using passive transfer studies, we confirm that these IL-23–dependent CD4+ T cells are highly pathogenic and essential for the establishment of organ-specific inflammation associated with central nervous system autoimmunity.

4,027 citations

Journal ArticleDOI
01 Feb 2006-Immunity
TL;DR: The data indicate that, in the presence of IL-6, TGFbeta1 subverts Th1 and Th2 differentiation for the generation ofIL-17-producing T cells.

3,711 citations

Related Papers (5)
Trending Questions (1)
Does IL 12 play a role in the pathogenesis of amoebiasis?

IL-12 is not mentioned in the provided paper. The paper is about the role of IL-23 and the IL-23/TH17 immune axis in the pathogenesis and treatment of psoriasis.