scispace - formally typeset
Search or ask a question
Journal ArticleDOI

The Role of Immune Cells in Oxi-Inflamm-Aging

01 Nov 2021-Cells (Multidisciplinary Digital Publishing Institute)-Vol. 10, Iss: 11, pp 2974
TL;DR: In this article, the function of immune cells can be used as an indicator of the rate of aging of an individual, and the immune system can work as a driver of aging by amplifying the oxidative-inflammatory stress associated with aging (oxi-inflamm-aging).
Abstract: Aging is the result of the deterioration of the homeostatic systems (nervous, endocrine, and immune systems), which preserve the organism’s health. We propose that the age-related impairment of these systems is due to the establishment of a chronic oxidative stress situation that leads to low-grade chronic inflammation throughout the immune system’s activity. It is known that the immune system weakens with age, which increases morbidity and mortality. In this context, we describe how the function of immune cells can be used as an indicator of the rate of aging of an individual. In addition to this passive role as a marker, we describe how the immune system can work as a driver of aging by amplifying the oxidative-inflammatory stress associated with aging (oxi-inflamm-aging) and inducing senescence in far tissue cells. Further supporting our theory, we discuss how certain lifestyle conditions (such as social environment, nutrition, or exercise) can have an impact on longevity by affecting the oxidative and inflammatory state of immune cells, regulating immunosenescence and its contribution to oxi-inflamm-aging.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper , the authors considered mitochondria and oxidative stress as related to nutrition, changes in extracellular matrix molecules, and associated ovarian stromal compartment where immune cells of both the native and adaptive systems seem to play an important role.
Abstract: Ovarian age is classically considered the main cause of female reproductive infertility. In women, the process proceeds as an ongoing decline in the primordial follicle stockpile and it is associated with reduced fertility in the mid-thirties, irregular menstruation from the mid-forties, cessation of fertility, and, eventually, menopause in the early fifties. Reproductive aging is historically associated with changes in oocyte quantity and quality. However, besides the oocyte, other cellular as well as environmental factors have been the focus of more recent investigations suggesting that ovarian decay is a complex and multifaceted process. Among these factors, we will consider mitochondria and oxidative stress as related to nutrition, changes in extracellular matrix molecules, and the associated ovarian stromal compartment where immune cells of both the native and adaptive systems seem to play an important role. Understanding such processes is crucial to design treatment strategies to slow down ovarian aging and consequently prolong reproductive lifespan and, more to this, alleviaingt side effects of menopause on the musculoskeletal, cardiovascular, and nervous systems.

11 citations

Journal ArticleDOI
TL;DR: This review discusses in detail the most relevant proteolytic systems that together with chaperones contribute to creating the proteostasis network that is kept in dynamic balance to maintain overall functionality of cellular proteomes.
Abstract: In this review, we discuss in detail the most relevant proteolytic systems that together with chaperones contribute to creating the proteostasis network that is kept in dynamic balance to maintain overall functionality of cellular proteomes. Data accumulated over decades demonstrate that the effectiveness of elements of the proteostasis network declines with age. In this scenario, failure to degrade misfolded or faulty proteins increases the risk of protein aggregation, chronic inflammation, and the development of age-related diseases. This is especially important in the context of aging-related modification of functions of the immune system.

11 citations

Journal ArticleDOI
TL;DR: Recently, senomorphic and senolityc drugs have become relevant in slowing down or eliminating senescence cells, and even though they have shown promising results in experimental studies, their clinical use is still yet to be determined.
Abstract: Atherosclerosis is probably one of the paradigms of disease linked to aging. Underlying the physiopathology of atherosclerosis are cellular senescence, oxidative stress, and inflammation. These factors are increased in the elderly and from chronic disease patients. Elevated levels of oxidative stress affect cellular function and metabolism, inducing senescence. This senescence modifies the cell phenotype into a senescent secretory phenotype. This phenotype activates immune cells, leading to chronic systemic inflammation. Moreover, due to their secretory phenotype, senescence cells present an increased release of highlighted extracellular vesicles that will change nearby/neighborhood cells and paracrine signaling. For this reason, searching for specific senescent cell biomarkers and therapies against the development/killing of senescent cells has become relevant. Recently, senomorphic and senolityc drugs have become relevant in slowing down or eliminating senescence cells. However, even though they have shown promising results in experimental studies, their clinical use is still yet to be determined.

7 citations

Journal ArticleDOI
TL;DR: A bibliometric analysis of the scientific literature on atherosclerosis to describe the research landscape found the NLRP3 inflammasome, interleukin-1β, gut microbiota and SCFAs, exosome, long non-coding RNAs, autophagy, and cellular senescence were described to be hot issues in the field.
Abstract: Background Increasing evidence has spurred a considerable evolution of concepts related to atherosclerosis, prompting the need to provide a comprehensive view of the growing literature. By retrieving publications in the Web of Science Core Collection (WoSCC) of Clarivate Analytics, we conducted a bibliometric analysis of the scientific literature on atherosclerosis to describe the research landscape. Methods A search was conducted of the WoSCC for articles and reviews serving exclusively as a source of information on atherosclerosis published between 2012 and 2022. Microsoft Excel 2019 was used to chart the annual productivity of research relevant to atherosclerosis. Through CiteSpace and VOSviewer, the most prolific countries or regions, authors, journals, and resource-, intellectual-, and knowledge-sharing in atherosclerosis research, as well as co-citation analysis of references and keywords, were analyzed. Results A total of 20,014 publications were retrieved. In terms of publications, the United States remains the most productive country (6,390, 31,93%). The most publications have been contributed by Johns Hopkins Univ (730, 3.65%). ALVARO ALONSO produced the most published works (171, 0.85%). With a betweenness centrality of 0.17, ERIN D MICHOS was the most influential author. The most prolific journal was identified as Atherosclerosis (893, 4.46%). Circulation received the most co-citations (14,939, 2.79%). Keywords with the ongoing strong citation bursts were “nucleotide-binding oligomerization (NOD), Leucine-rich repeat (LRR)-containing protein (NLRP3) inflammasome,” “short-chain fatty acids (SCFAs),” “exosome,” and “homeostasis,” etc. Conclusion The research on atherosclerosis is driven mostly by North America and Europe. Intensive research has focused on the link between inflammation and atherosclerosis, as well as its complications. Specifically, the NLRP3 inflammasome, interleukin-1β, gut microbiota and SCFAs, exosome, long non-coding RNAs, autophagy, and cellular senescence were described to be hot issues in the field.

6 citations

Journal ArticleDOI
TL;DR: In this review, the most important findings regarding how different social environments modulate immunosenescence and therefore the aging rate are explained, as well as the role of stress responses, hormesis, and resilience in these environments will be explained.
Abstract: Abstract Immune system aging, a process known as immunosenescence, involves a striking rearrangement affecting all immune cells, resulting in an increased rate of infections and a major incidence of autoimmune diseases and cancer. Nonetheless, differences in how individuals of the same chronological age carry out this immunosenescence establishment and thus the aging rate have been reported. In the context of neuroimmunoendocrine communication and its role in the response to stress situations, growing evidence suggests that social environments profoundly influence all physiological responses, especially those linked to immunity. Accordingly, negative contexts (loneliness in humans/social isolation in rodents) were associated with immune impairments and decreased lifespan. However, positive social environments have been correlated with adequate immunity and increased lifespan. Therefore, the social context in which an individual lives is proposed as a decisive modulator of the immunosenescence process and, consequently, of the rate of aging. In this review, the most important findings regarding how different social environments (negative and positive) modulate immunosenescence and therefore the aging rate, as well as the role of stress responses, hormesis, and resilience in these environments will be explained. Finally, several possible molecular mechanisms underlying the effects of negative and positive environments on immunosenescence will be suggested.

4 citations

References
More filters
Journal ArticleDOI
06 Jun 2013-Cell
TL;DR: Nine tentative hallmarks that represent common denominators of aging in different organisms are enumerated, with special emphasis on mammalian aging, to identify pharmaceutical targets to improve human health during aging, with minimal side effects.

9,980 citations

Journal ArticleDOI
TL;DR: It seems possible that one factor in aging may be related to deleterious side attacks of free radicals (which are normally produced in the course of cellular metabolism) on cell constituents.
Abstract: The phenomenon of growth, decline and death—aging—has been the source of considerable speculation (1, 8, 10). This cycle seems to be a more or less direct function of the metabolic rate and this in turn depends on the species (animal or plant) on which are superimposed the factors of heredity and the effects of the stresses and strains of life—which alter the metabolic activity. The universality of this phenomenon suggests that the reactions which cause it are basically the same in all living things. Viewing this process in the light of present day free radical and radiation chemistry and of radiobiology, it seems possible that one factor in aging may be related to deleterious side attacks of free radicals (which are normally produced in the course of cellular metabolism) on cell constituents.* Irradiation of living things induces mutation, cancer, and aging (9). Inasmuch as these also arise spontaneously in nature, it is natural to inquire if the processes might not be similar. It is believed that one mechanism of irradiation effect is through liberation of OH and HO 2 radicals (12). There is evidence, although indirect, that these two highly active free radicals are produced normally in living systems. In the first place, free radicals are present in living cells; this was recently demonstrated in vivo by a paramagnetic resonance absorption method (3). Further, it was shown that the concentration of free radicals increased with increasing metabolic activity in conformity with the postulates set forth some years ago that free radicals were involved in biologic oxidation-reduction reactions (11, 13). Are some of these free radicals OH and/or HO2, or radicals of a similar high order of reactivity, and where might they arise in the cell? The most likely source of OH and HO2 radicals, at least in the animal cell, would be the interaction of the respiratory enzymes involved

7,917 citations

Journal ArticleDOI
TL;DR: It is proposed that DNA methylation age measures the cumulative effect of an epigenetic maintenance system, and can be used to address a host of questions in developmental biology, cancer and aging research.
Abstract: It is not yet known whether DNA methylation levels can be used to accurately predict age across a broad spectrum of human tissues and cell types, nor whether the resulting age prediction is a biologically meaningful measure. I developed a multi-tissue predictor of age that allows one to estimate the DNA methylation age of most tissues and cell types. The predictor, which is freely available, was developed using 8,000 samples from 82 Illumina DNA methylation array datasets, encompassing 51 healthy tissues and cell types. I found that DNA methylation age has the following properties: first, it is close to zero for embryonic and induced pluripotent stem cells; second, it correlates with cell passage number; third, it gives rise to a highly heritable measure of age acceleration; and, fourth, it is applicable to chimpanzee tissues. Analysis of 6,000 cancer samples from 32 datasets showed that all of the considered 20 cancer types exhibit significant age acceleration, with an average of 36 years. Low age-acceleration of cancer tissue is associated with a high number of somatic mutations and TP53 mutations, while mutations in steroid receptors greatly accelerate DNA methylation age in breast cancer. Finally, I characterize the 353 CpG sites that together form an aging clock in terms of chromatin states and tissue variance. I propose that DNA methylation age measures the cumulative effect of an epigenetic maintenance system. This novel epigenetic clock can be used to address a host of questions in developmental biology, cancer and aging research.

4,233 citations

Journal ArticleDOI
TL;DR: The beneficial effects of inflammation devoted to the neutralization of dangerous/harmful agents early in life and in adulthood become detrimental late in life in a period largely not foreseen by evolution, according to the antagonistic pleiotropy theory of aging.
Abstract: In this paper we extend the “network theory of aging,” and we argue that a global reduction in the capacity to cope with a variety of stressors and a concomitant progressive increase in proinflammatory status are major characteristics of the aging process. This phenomenon, which we will refer to as “inflamm-aging,” is provoked by a continuous antigenic load and stress. On the basis of evolutionary studies, we also argue that the immune and the stress responses are equivalent and that antigens are nothing other than particular types of stressors. We also propose to return macrophage to its rightful place as central actor not only in the inflammatory response and immunity, but also in the stress response. The rate of reaching the threshold of proinflammatory status over which diseases/disabilities ensue and the individual capacity to cope with and adapt to stressors are assumed to be complex traits with a genetic component. Finally, we argue that the persistence of inflammatory stimuli over time represents the biologic background (first hit) favoring the susceptibility to age-related diseases/disabilities. A second hit (absence of robust gene variants and/or presence of frail gene variants) is likely necessary to develop overt organ-specific age-related diseases having an inflammatory pathogenesis, such as atherosclerosis, Alzheimer's disease, osteoporosis, and diabetes. Following this perspective, several paradoxes of healthy centenarians (increase of plasma levels of inflammatory cytokines, acute phase proteins, and coagulation factors) are illustrated and explained. In conclusion, the beneficial effects of inflammation devoted to the neutralization of dangerous/harmful agents early in life and in adulthood become detrimental late in life in a period largely not foreseen by evolution, according to the antagonistic pleiotropy theory of aging.

3,763 citations

Journal ArticleDOI
TL;DR: Overall, the influence of both objective and subjective social isolation on risk for mortality is comparable with well-established risk factors for mortality.
Abstract: Actual and perceived social isolation are both associated with increased risk for early mortality. In this meta-analytic review, our objective is to establish the overall and relative magnitude of social isolation and loneliness and to examine possible moderators. We conducted a literature search of studies (January 1980 to February 2014) using MEDLINE, CINAHL, PsycINFO, Social Work Abstracts, and Google Scholar. The included studies provided quantitative data on mortality as affected by loneliness, social isolation, or living alone. Across studies in which several possible confounds were statistically controlled for, the weighted average effect sizes were as follows: social isolation odds ratio (OR) = 1.29, loneliness OR = 1.26, and living alone OR = 1.32, corresponding to an average of 29%, 26%, and 32% increased likelihood of mortality, respectively. We found no differences between measures of objective and subjective social isolation. Results remain consistent across gender, length of follow-up, and world region, but initial health status has an influence on the findings. Results also differ across participant age, with social deficits being more predictive of death in samples with an average age younger than 65 years. Overall, the influence of both objective and subjective social isolation on risk for mortality is comparable with well-established risk factors for mortality.

3,157 citations