scispace - formally typeset
Search or ask a question
Journal ArticleDOI

The role of neuropeptide Y in the antiobesity action of the obese gene product.

12 Oct 1995-Nature (Nature Publishing Group)-Vol. 377, Iss: 6549, pp 530-532
TL;DR: In this paper, a truncated inactive protein was found to suppress food intake and decrease body weight in normal and ob/ob mice but not db/db (diabetic) mice, which are thought to lack the appropriate receptor.
Abstract: Recently Zhang et al. cloned a gene that is expressed only in adipose tissue of the mouse. The obese phenotype of the ob/ob mouse is linked to a mutation in the obese gene that results in expression of a truncated inactive protein. Human and rat homologues for this gene are known. Previous experiments predict such a hormone to have a hypothalamic target. Hypothalamic neuropeptide Y stimulates food intake, decreases thermogenesis, and increases plasma insulin and corticosterone levels making it a potential target. Here we express the obese protein in Escherichia coli and find that it suppresses food intake and decreases body weight dramatically when administered to normal and ob/ob mice but not db/db (diabetic) mice, which are thought to lack the appropriate receptor. High-affinity binding was detected in the rat hypothalamus. One mechanism by which this protein regulated food intake and metabolism was inhibition of neuropeptide-Y synthesis and release.
Citations
More filters
Journal ArticleDOI
TL;DR: Serum leptin concentrations are correlated with the percentage of body fat, suggesting that most obese persons are insensitive to endogenous leptin production.
Abstract: Background Leptin, the product of the ob gene, is a hormone secreted by adipocytes. Animals with mutations in the ob gene are obese and lose weight when given leptin, but little is known about the physiologic actions of leptin in humans. Methods Using a newly developed radioimmunoassay, we measured serum concentrations of leptin in 136 normal-weight subjects and 139 obese subjects (body-mass index, >27.3 for men and >27.8 for women; the body-mass index was defined as the weight in kilograms divided by the square of the height in meters). The measurements were repeated in seven obese subjects after weight loss and during maintenance of the lower weight. The ob messenger RNA (mRNA) content of adipocytes was determined in 27 normal-weight and 27 obese subjects. Results The mean (±SD) serum leptin concentrations were 31.3±24.1 ng per milliliter in the obese subjects and 7.5±9.3 ng per milliliter in the normal-weight subjects (P<0.001). There was a strong positive correlation between serum leptin concentration...

6,350 citations

Journal ArticleDOI
06 Apr 2000-Nature
TL;DR: A model is described that delineates the roles of individual hormonal and neuropeptide signalling pathways in the control of food intake and the means by which obesity can arise from inherited or acquired defects in their function.
Abstract: New information regarding neuronal circuits that control food intake and their hormonal regulation has extended our understanding of energy homeostasis, the process whereby energy intake is matched to energy expenditure over time. The profound obesity that results in rodents (and in the rare human case as well) from mutation of key signalling molecules involved in this regulatory system highlights its importance to human health. Although each new signalling pathway discovered in the hypothalamus is a potential target for drug development in the treatment of obesity, the growing number of such signalling molecules indicates that food intake is controlled by a highly complex process. To better understand how energy homeostasis can be achieved, we describe a model that delineates the roles of individual hormonal and neuropeptide signalling pathways in the control of food intake and the means by which obesity can arise from inherited or acquired defects in their function.

6,178 citations

Journal ArticleDOI
22 Oct 1998-Nature
TL;DR: The role of leptin in the control of body weight and its relevance to the pathogenesis of obesity are reviewed.
Abstract: The assimilation, storage and use of energy from nutrients constitute a homeostatic system that is essential for life In vertebrates, the ability to store sufficient quantities of energy-dense triglyceride in adipose tissue allows survival during the frequent periods of food deprivation encountered during evolution However, the presence of excess adipose tissue can be maladaptive A complex physiological system has evolved to regulate fuel stores and energy balance at an optimum level Leptin, a hormone secreted by adipose tissue, and its receptor are integral components of this system Leptin also signals nutritional status to several other physiological systems and modulates their function Here we review the role of leptin in the control of body weight and its relevance to the pathogenesis of obesity

5,335 citations

Journal ArticleDOI
20 Feb 1998-Cell
TL;DR: Two novel neuropeptides are identified, both derived from the same precursor by proteolytic processing, that bind and activate two closely related (previously) orphan G protein-coupled receptors in the hypothalamus of rats.

5,162 citations


Cites background from "The role of neuropeptide Y in the a..."

  • ...…nucleus.example, NPY, which is negatively regulated by leptin Neurons containing neuropeptides such as NPY (Bing(Zarjevski et al., 1993; Stephens et al., 1995; Tartaglia et al., 1996), melanocortins (Jacobowitz and O’Donohue,et al., 1995), has been established as one of the positive…...

    [...]

Journal ArticleDOI
29 Dec 1995-Cell
TL;DR: The ob gene product, leptin, is an important circulating signal for the regulation of body weight and a series of leptin-alkaline phosphatase (AP) fusion proteins as well as [125I]leptin fusion proteins were generated to identify high affinity leptin-binding sites in the mouse choroid plexus.

3,598 citations

References
More filters
Journal ArticleDOI
01 Dec 1994-Nature
TL;DR: The ob gene product may function as part of a signalling pathway from adipose tissue that acts to regulate the size of the body fat depot.
Abstract: The mechanisms that balance food intake and energy expenditure determine who will be obese and who will be lean. One of the molecules that regulates energy balance in the mouse is the obese (ob) gene. Mutation of ob results in profound obesity and type II diabetes as part of a syndrome that resembles morbid obesity in humans. The ob gene product may function as part of a signalling pathway from adipose tissue that acts to regulate the size of the body fat depot.

12,394 citations

Journal ArticleDOI
28 Jul 1995-Science
TL;DR: Injection of wild-type mice twice daily with the mouse protein resulted in a sustained 12 percent weight loss, decreased food intake, and a reduction of body fat from 12.2 to 0.7 percent, suggesting that the OB protein serves an endocrine function to regulate body fat stores.
Abstract: The gene product of the ob locus is important in the regulation of body weight. The ob product was shown to be present as a 16-kilodalton protein in mouse and human plasma but was undetectable in plasma from C57BL/6J ob/ob mice. Plasma levels of this protein were increased in diabetic (db) mice, a mutant thought to be resistant to the effects of ob. Daily intraperitoneal injections of either mouse or human recombinant OB protein reduced the body weight of ob/ob mice by 30 percent after 2 weeks of treatment with no apparent toxicity but had no effect on db/db mice. The protein reduced food intake and increased energy expenditure in ob/ob mice. Injections of wild-type mice twice daily with the mouse protein resulted in a sustained 12 percent weight loss, decreased food intake, and a reduction of body fat from 12.2 to 0.7 percent. These data suggest that the OB protein serves an endocrine function to regulate body fat stores.

4,708 citations

Journal ArticleDOI
28 Jul 1995-Science
TL;DR: The data suggest that the OB protein regulates body weight and fat deposition through effects on metabolism and appetite.
Abstract: C57BL/6J mice with a mutation in the obese (ob) gene are obese, diabetic, and exhibit reduced activity, metabolism, and body temperature. Daily intraperitoneal injection of these mice with recombinant OB protein lowered their body weight, percent body fat, food intake, and serum concentrations of glucose and insulin. In addition, metabolic rate, body temperature, and activity levels were increased by this treatment. None of these parameters was altered beyond the level observed in lean controls, suggesting that the OB protein normalized the metabolic status of the ob/ob mice. Lean animals injected with OB protein maintained a smaller weight loss throughout the 28-day study and showed no changes in any of the metabolic parameters. These data suggest that the OB protein regulates body weight and fat deposition through effects on metabolism and appetite.

4,302 citations

Journal ArticleDOI
28 Jul 1995-Science
TL;DR: The behavioral effects after brain administration suggest that OB protein can act directly on neuronal networks that control feeding and energy balance in ob/ob and diet-induced obese mice.
Abstract: The recent positional cloning of the mouse ob gene and its human homology has provided the basis to investigate the potential role of the ob gene product in body weight regulation. A biologically active form of recombinant mouse OB protein was overexpressed and purified to near homogeneity from a bacterial expression system. Peripheral and central administration of microgram doses of OB protein reduced food intake and body weight of ob/ob and diet-induced obese mice but not in db/db obese mice. The behavioral effects after brain administration suggest that OB protein can act directly on neuronal networks that control feeding and energy balance.

3,355 citations

Journal ArticleDOI
TL;DR: With some antisera the immunoreactivity of the antigen was diminished by the introduction of a single I atom into the tyrosyl groups, whereas antigen containing a single (125)I-labelled 3-(4-hydroxyphenyl)propionamide group showed the same immunore activity as the unmodified antigen.
Abstract: 1. A new method is described for labelling proteins to high specific radioactivities with (125)I. The protein is treated with a (125)I-labelled acylating agent, iodinated 3-(4-hydroxyphenyl)propionic acid N-hydroxysuccinimide ester, which reacts with free amino groups in the protein molecule to attach the (125)I-labelled groups by amide bonds. 2. Three protein hormones have been labelled by this method, human growth hormone, human thyroid-stimulating hormone and human luteinizing hormone. Specific radioactivities of up to 170, 120 and 55muCi/mug respectively have been obtained for these hormones. 3. The immunoreactivity of these labelled hormones has been investigated by using a radioimmunoassay system specific for each hormone. These preparations have also been compared with and found to be equal or superior to labelled hormones prepared by chemical substitution of (125)I into tyrosine residues of the proteins by using the chloramine-t-oxidation procedure. 4. With some antisera the immunoreactivity of the antigen was diminished by the introduction of a single I atom into the tyrosyl groups, whereas antigen containing a single (125)I-labelled 3-(4-hydroxyphenyl)propionamide group showed the same immunoreactivity as the unmodified antigen.

3,120 citations