scispace - formally typeset
Search or ask a question
Journal ArticleDOI

The Role of the Microenvironment in Controlling the Fate of Bioprinted Stem Cells.

19 Jun 2020-Chemical Reviews (American Chemical Society (ACS))-Vol. 120, Iss: 19, pp 11056-11092
TL;DR: This review will examine the methods through which bioprinted stem cells are differentiated into desired cell lineages through biochemical, biological, and biomechanical techniques.
Abstract: The field of tissue engineering and regenerative medicine has made numerous advances in recent years in the arena of fabricating multifunctional, three-dimensional (3D) tissue constructs This can be attributed to novel approaches in the bioprinting of stem cells There are expansive options in bioprinting technology that have become more refined and specialized over the years, and stem cells address many limitations in cell source, expansion, and development of bioengineered tissue constructs While bioprinted stem cells present an opportunity to replicate physiological microenvironments with precision, the future of this practice relies heavily on the optimization of the cellular microenvironment To fabricate tissue constructs that are useful in replicating physiological conditions in laboratory settings, or in preparation for transplantation to a living host, the microenvironment must mimic conditions that allow bioprinted stem cells to proliferate, differentiate, and migrate The advances of bioprinting stem cells and directing cell fate have the potential to provide feasible and translatable approach to creating complex tissues and organs This review will examine the methods through which bioprinted stem cells are differentiated into desired cell lineages through biochemical, biological, and biomechanical techniques
Citations
More filters
Journal ArticleDOI
TL;DR: The results showed cdCEM was obtained with complete removal of cellular components while preserving major ECM proteins, and the potential of cell-based bioprinting using this cartilage-specific dECMMA bioink is demonstrated as an alternative option for auricular cartilage reconstruction.

75 citations

Journal ArticleDOI
TL;DR: In this article, a cell-surface nano-architecture that realizes molecular-recognition-initiated DNA assembly to mimic the dynamic behavior of membrane proteins, enabling the manipulation of cellular interaction in response to environmental changes.
Abstract: Cells sense and respond to the external environment, mainly through proteins presented on the membrane where their expression and conformation are dynamically regulated via intracellular programs. Here, we engineer a cell-surface nanoarchitecture that realizes molecular-recognition-initiated DNA assembly to mimic the dynamic behavior of membrane proteins, enabling the manipulation of cellular interaction in response to environmental changes. Our results show that this membrane-anchored DNA nanoarchitecture can be specifically activated by cell-responsive signals to external stimulation. Accordingly, multiple functional modules can be assembled onto the membrane to equip the cell with cell-type-specific binding and killing. This system is expected to offer a new paradigm for engineering therapeutic cells with customized sensing/response pathways.

51 citations

Journal ArticleDOI
TL;DR: In this article, a combined model was created by seeding hair follicles on 3D printed sweat glands and hair spheroids, and the interaction between SG scaffolds and HF spheroid was detected using RNA expression and immunofluorescence staining.
Abstract: Background Sweat glands (SGs) and hair follicles (HFs) are two important cutaneous appendages that play crucial roles in homeostatic maintenance and thermoregulation, and their interaction is involved in wound healing. SGs can be regenerated from mesenchymal stem cell-laden 3D bioprinted scaffolds, based on our previous studies, whereas regeneration of HFs could not be achieved in the same model. Due to the lack of an in vitro model, the underlying molecular mechanism of the interaction between SGs and HFs in regeneration could not be fully understood. The purpose of the present study was to establish an in vitro model of skin constructs with SGs and HFs and explore the interaction between these two appendages in regeneration. Methods To investigate the interaction effects between SGs and HFs during their regeneration processes, a combined model was created by seeding HF spheroids on 3D printed SG scaffolds. The interaction between SG scaffolds and HF spheroids was detected using RNA expression and immunofluorescence staining. The effects of microenvironmental cues on SG and HF regeneration were analysed by altering seed cell types and plantar dermis homogenate in the scaffold. Results According to this model, we overcame the difficulties in simultaneously inducing SG and HF regeneration and explored the interaction effects between SG scaffolds and HF spheroids. Surprisingly, HF spheroids promoted both SG and HF differentiation in SG scaffolds, while SG scaffolds promoted SG differentiation but had little effect on HF potency in HF spheroids. Specifically, microenvironmental factors (plantar dermis homogenate) in SG scaffolds effectively promoted SG and HF genesis in HF spheroids, no matter what the seed cell type in SG scaffolds was, and the promotion effects were persistent. Conclusions Our approach elucidated a new model for SG and HF formation in vitro and provided an applicable platform to investigate the interaction between SGs and HFs in vitro. This platform might facilitate 3D skin constructs with multiple appendages and unveil the spatiotemporal molecular program of multiple appendage regeneration.

27 citations

Journal ArticleDOI
TL;DR: In this article , a biomimetic microporous methacrylate-modified acellular cartilage matrix (ACMMA) was used for the development of biological auricle equivalents with precise shapes, low immunogenicity, and excellent mechanics using auricular chondrocytes.

27 citations

References
More filters
Journal ArticleDOI
25 Aug 2006-Cell
TL;DR: Naive mesenchymal stem cells are shown here to specify lineage and commit to phenotypes with extreme sensitivity to tissue-level elasticity, consistent with the elasticity-insensitive commitment of differentiated cell types.

12,204 citations

Journal ArticleDOI
TL;DR: 3D bioprinting is being applied to regenerative medicine to address the need for tissues and organs suitable for transplantation and developing high-throughput 3D-bioprinted tissue models for research, drug discovery and toxicology.
Abstract: Additive manufacturing, otherwise known as three-dimensional (3D) printing, is driving major innovations in many areas, such as engineering, manufacturing, art, education and medicine. Recent advances have enabled 3D printing of biocompatible materials, cells and supporting components into complex 3D functional living tissues. 3D bioprinting is being applied to regenerative medicine to address the need for tissues and organs suitable for transplantation. Compared with non-biological printing, 3D bioprinting involves additional complexities, such as the choice of materials, cell types, growth and differentiation factors, and technical challenges related to the sensitivities of living cells and the construction of tissues. Addressing these complexities requires the integration of technologies from the fields of engineering, biomaterials science, cell biology, physics and medicine. 3D bioprinting has already been used for the generation and transplantation of several tissues, including multilayered skin, bone, vascular grafts, tracheal splints, heart tissue and cartilaginous structures. Other applications include developing high-throughput 3D-bioprinted tissue models for research, drug discovery and toxicology.

4,841 citations

Journal ArticleDOI
02 Jan 2004-Science
TL;DR: The results indicate that microRNAs are components of the molecular circuitry that controls mouse hematopoiesis and suggest that other micro RNAs have similar regulatory roles during other facets of vertebrate development.
Abstract: MicroRNAs (miRNAs) are an abundant class of ∼22-nucleotide regulatory RNAs found in plants and animals. Some miRNAs of plants, Caenorhabditis elegans, and Drosophila play important gene-regulatory roles during development by pairing to target mRNAs to specify posttranscriptional repression of these messages. We identify three miRNAs that are specifically expressed in hematopoietic cells and show that their expression is dynamically regulated during early hematopoiesis and lineage commitment. One of these miRNAs, miR-181, was preferentially expressed in the B-lymphoid cells of mouse bone marrow, and its ectopic expression in hematopoietic stem/progenitor cells led to an increased fraction of B-lineage cells in both tissue-culture differentiation assays and adult mice. Our results indicate that microRNAs are components of the molecular circuitry that controls mouse hematopoiesis and suggest that other microRNAs have similar regulatory roles during other facets of vertebrate development.

3,307 citations

Journal ArticleDOI
TL;DR: The extracellular matrix is the non-cellular component present within all tissues and organs, and provides not only essential physical scaffolding for the cellular constituents but also initiates crucial biochemical and biomechanical cues that are required for tissue development.
Abstract: ![Figure][1] The extracellular matrix (ECM) is the non-cellular component present within all tissues and organs, and provides not only essential physical scaffolding for the cellular constituents but also initiates crucial biochemical and biomechanical cues that are required for tissue

3,190 citations

Journal ArticleDOI
27 Nov 2009-Science
TL;DR: The extracellular matrix and ECM proteins are important in phenomena as diverse as developmental patterning, stem cell niches, cancer, and genetic diseases and these properties need to be incorporated into considerations of the functions of the ECM.
Abstract: The extracellular matrix (ECM) and ECM proteins are important in phenomena as diverse as developmental patterning, stem cell niches, cancer, and genetic diseases. The ECM has many effects beyond providing structural support. ECM proteins typically include multiple, independently folded domains whose sequences and arrangement are highly conserved. Some of these domains bind adhesion receptors such as integrins that mediate cell-matrix adhesion and also transduce signals into cells. However, ECM proteins also bind soluble growth factors and regulate their distribution, activation, and presentation to cells. As organized, solid-phase ligands, ECM proteins can integrate complex, multivalent signals to cells in a spatially patterned and regulated fashion. These properties need to be incorporated into considerations of the functions of the ECM.

2,858 citations