scispace - formally typeset
Search or ask a question
Journal ArticleDOI

The security of practical quantum key distribution

TL;DR: Essential theoretical tools that have been developed to assess the security of the main experimental platforms are presented (discrete- variable, continuous-variable, and distributed-phase-reference protocols).
Abstract: Quantum key distribution (QKD) is the first quantum information task to reach the level of mature technology, already fit for commercialization. It aims at the creation of a secret key between authorized partners connected by a quantum channel and a classical authenticated channel. The security of the key can in principle be guaranteed without putting any restriction on an eavesdropper's power. This article provides a concise up-to-date review of QKD, biased toward the practical side. Essential theoretical tools that have been developed to assess the security of the main experimental platforms are presented (discrete-variable, continuous-variable, and distributed-phase-reference protocols).

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: This review focuses on continuous-variable quantum information processes that rely on any combination of Gaussian states, Gaussian operations, and Gaussian measurements, including quantum communication, quantum cryptography, quantum computation, quantum teleportation, and quantum state and channel discrimination.
Abstract: The science of quantum information has arisen over the last two decades centered on the manipulation of individual quanta of information, known as quantum bits or qubits. Quantum computers, quantum cryptography, and quantum teleportation are among the most celebrated ideas that have emerged from this new field. It was realized later on that using continuous-variable quantum information carriers, instead of qubits, constitutes an extremely powerful alternative approach to quantum information processing. This review focuses on continuous-variable quantum information processes that rely on any combination of Gaussian states, Gaussian operations, and Gaussian measurements. Interestingly, such a restriction to the Gaussian realm comes with various benefits, since on the theoretical side, simple analytical tools are available and, on the experimental side, optical components effecting Gaussian processes are readily available in the laboratory. Yet, Gaussian quantum information processing opens the way to a wide variety of tasks and applications, including quantum communication, quantum cryptography, quantum computation, quantum teleportation, and quantum state and channel discrimination. This review reports on the state of the art in this field, ranging from the basic theoretical tools and landmark experimental realizations to the most recent successful developments.

2,781 citations


Cites background from "The security of practical quantum k..."

  • ...For an elementary introduction to Gaussian quantum channels, see Eisert and Wolf (2007), and for continuous-variable quantum cryptography, see the reviews of Cerf and Grangier (2007) and Scarani et al. (2009)....

    [...]

Journal ArticleDOI
Tamar Frankel1
TL;DR: The Essay concludes that practitioners theorize, and theorists practice, use these intellectual tools differently because the goals and orientations of theorists and practitioners, and the constraints under which they act, differ.
Abstract: Much has been written about theory and practice in the law, and the tension between practitioners and theorists. Judges do not cite theoretical articles often; they rarely "apply" theories to particular cases. These arguments are not revisited. Instead the Essay explores the working and interaction of theory and practice, practitioners and theorists. The Essay starts with a story about solving a legal issue using our intellectual tools - theory, practice, and their progenies: experience and "gut." Next the Essay elaborates on the nature of theory, practice, experience and "gut." The third part of the Essay discusses theories that are helpful to practitioners and those that are less helpful. The Essay concludes that practitioners theorize, and theorists practice. They use these intellectual tools differently because the goals and orientations of theorists and practitioners, and the constraints under which they act, differ. Theory, practice, experience and "gut" help us think, remember, decide and create. They complement each other like the two sides of the same coin: distinct but inseparable.

2,077 citations

Journal ArticleDOI
TL;DR: In this article, the basic elements of entanglement theory for two or more particles and verification procedures, such as Bell inequalities, entangle witnesses, and spin squeezing inequalities, are discussed.
Abstract: How can one prove that a given state is entangled? In this paper we review different methods that have been proposed for entanglement detection. We first explain the basic elements of entanglement theory for two or more particles and then entanglement verification procedures such as Bell inequalities, entanglement witnesses, the determination of nonlinear properties of a quantum state via measurements on several copies, and spin squeezing inequalities. An emphasis is given on the theory and application of entanglement witnesses. We also discuss several experiments, where some of the presented methods have been implemented.

1,639 citations

Journal ArticleDOI
19 Oct 2018-Science
TL;DR: What it will take to achieve this so-called quantum internet is reviewed and different stages of development that each correspond to increasingly powerful applications are defined, including a full-blown quantum internet with functional quantum computers as nodes connected through quantum communication channels.
Abstract: The internet-a vast network that enables simultaneous long-range classical communication-has had a revolutionary impact on our world. The vision of a quantum internet is to fundamentally enhance internet technology by enabling quantum communication between any two points on Earth. Such a quantum internet may operate in parallel to the internet that we have today and connect quantum processors in order to achieve capabilities that are provably impossible by using only classical means. Here, we propose stages of development toward a full-blown quantum internet and highlight experimental and theoretical progress needed to attain them.

1,397 citations


Cites background or methods from "The security of practical quantum k..."

  • ...These pairwise keys allow the end nodes to generate their own key, provided that all intermediary nodes are trusted (14)....

    [...]

  • ...The hardware required at the lowest stage (mainly light sources, optical links, and detectors) has been described in detail in previous literature (14, 23)....

    [...]

Journal ArticleDOI
TL;DR: In this article, a review summarizes recent progress of single-photon emitters based on defects in solids and highlights new research directions, including photophysical properties of singlephoton emissions and efforts towards scalable system integration.
Abstract: This Review summarizes recent progress of single-photon emitters based on defects in solids and highlights new research directions. The photophysical properties of single-photon emitters and efforts towards scalable system integration are also discussed.

1,387 citations

References
More filters
Journal ArticleDOI
TL;DR: This paper suggests ways to solve currently open problems in cryptography, and discusses how the theories of communication and computation are beginning to provide the tools to solve cryptographic problems of long standing.
Abstract: Two kinds of contemporary developments in cryptography are examined. Widening applications of teleprocessing have given rise to a need for new types of cryptographic systems, which minimize the need for secure key distribution channels and supply the equivalent of a written signature. This paper suggests ways to solve these currently open problems. It also discusses how the theories of communication and computation are beginning to provide the tools to solve cryptographic problems of long standing.

14,980 citations


"The security of practical quantum k..." refers methods in this paper

  • ...In particular, most often some realization of the DiffieHellman algorithm (Diffie and Hellman, 1976) is used in the key agreement phase....

    [...]

Journal ArticleDOI
Artur Ekert1
TL;DR: Practical application of the generalized Bells theorem in the so-called key distribution process in cryptography is reported, based on the Bohms version of the Einstein-Podolsky-Rosen gedanken experiment andBells theorem is used to test for eavesdropping.
Abstract: Practical application of the generalized Bells theorem in the so-called key distribution process in cryptography is reported. The proposed scheme is based on the Bohms version of the Einstein-Podolsky-Rosen gedanken experiment and Bells theorem is used to test for eavesdropping. © 1991 The American Physical Society.

9,259 citations


"The security of practical quantum k..." refers background or methods in this paper

  • ...…solution to the key distribution problem based on quantum physics (Bennett and Brassard, 1984); this idea, independently re-discovered by Ekert a few years later (Ekert, 1991), was the beginning of quantum key distribution (QKD) which was to become the most promising task of quantum cryptography1 ....

    [...]

  • ...It was not until 1991, when Artur Ekert, independently from the earlier developments, published a paper on quantum key distributions, that the field gained a rapid popularity (Ekert, 1991)....

    [...]

  • ...In other words, the outcomes of the measurements did not exist before the measurements; but then, in particular, Eve could not know them (Ekert, 1991)....

    [...]

  • ...The idea is basically the one that triggered Ekert’s discovery (Ekert, 1991), although Ekert himself did not push it that far: the fact, that Alice and Bob observe correlations that violate a Bell inequality, is enough to guarantee entanglement, independent of the nature of the quantum signals and…...

    [...]

  • ...The corresponding EB protocol is known as BBM (Bennett, Brassard and Mermin, 1992); the E91 protocol (Ekert, 1991) is equivalent to it when implemented with qubits....

    [...]

Journal ArticleDOI
TL;DR: A theory of secrecy systems is developed on a theoretical level and is intended to complement the treatment found in standard works on cryptography.
Abstract: THE problems of cryptography and secrecy systems furnish an interesting application of communication theory.1 In this paper a theory of secrecy systems is developed. The approach is on a theoretical level and is intended to complement the treatment found in standard works on cryptography.2 There, a detailed study is made of the many standard types of codes and ciphers, and of the ways of breaking them. We will be more concerned with the general mathematical structure and properties of secrecy systems.

8,777 citations


"The security of practical quantum k..." refers background in this paper

  • ...Three decades later, Shannon proved that the Vernam scheme is optimal: there is no encryption method that requires less key (Shannon, 1949)....

    [...]

Book
01 Jan 1995
TL;DR: In this article, the authors present a systematic account of optical coherence theory within the framework of classical optics, as applied to such topics as radiation from sources of different states of coherence, foundations of radiometry, effects of source coherence on the spectra of radiated fields, and scattering of partially coherent light by random media.
Abstract: This book presents a systematic account of optical coherence theory within the framework of classical optics, as applied to such topics as radiation from sources of different states of coherence, foundations of radiometry, effects of source coherence on the spectra of radiated fields, coherence theory of laser modes, and scattering of partially coherent light by random media. The book starts with a full mathematical introduction to the subject area and each chapter concludes with a set of exercises. The authors are renowned scientists and have made substantial contributions to many of the topics treated in the book. Much of the book is based on courses given by them at universities, scientific meetings and laboratories throughout the world. This book will undoubtedly become an indispensable aid to scientists and engineers concerned with modern optics, as well as to teachers and graduate students of physics and engineering.

7,658 citations

Journal ArticleDOI
TL;DR: In this paper, the authors considered factoring integers and finding discrete logarithms on a quantum computer and gave an efficient randomized algorithm for these two problems, which takes a number of steps polynomial in the input size of the integer to be factored.
Abstract: A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time by at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration. This paper considers factoring integers and finding discrete logarithms, two problems which are generally thought to be hard on a classical computer and which have been used as the basis of several proposed cryptosystems. Efficient randomized algorithms are given for these two problems on a hypothetical quantum computer. These algorithms take a number of steps polynomial in the input size, e.g., the number of digits of the integer to be factored.

7,427 citations