scispace - formally typeset

Journal ArticleDOI

The Soil Moisture Active Passive (SMAP) Mission

06 May 2010-Vol. 98, Iss: 5, pp 704-716

TL;DR: The Soil Moisture Active Passive mission is one of the first Earth observation satellites being developed by NASA in response to the National Research Council's Decadal Survey to make global measurements of the soil moisture present at the Earth's land surface.
Abstract: The Soil Moisture Active Passive (SMAP) mission is one of the first Earth observation satellites being developed by NASA in response to the National Research Council's Decadal Survey SMAP will make global measurements of the soil moisture present at the Earth's land surface and will distinguish frozen from thawed land surfaces Direct observations of soil moisture and freeze/thaw state from space will allow significantly improved estimates of water, energy, and carbon transfers between the land and the atmosphere The accuracy of numerical models of the atmosphere used in weather prediction and climate projections are critically dependent on the correct characterization of these transfers Soil moisture measurements are also directly applicable to flood assessment and drought monitoring SMAP observations can help monitor these natural hazards, resulting in potentially great economic and social benefits SMAP observations of soil moisture and freeze/thaw timing will also reduce a major uncertainty in quantifying the global carbon balance by helping to resolve an apparent missing carbon sink on land over the boreal latitudes The SMAP mission concept will utilize L-band radar and radiometer instruments sharing a rotating 6-m mesh reflector antenna to provide high-resolution and high-accuracy global maps of soil moisture and freeze/thaw state every two to three days In addition, the SMAP project will use these observations with advanced modeling and data assimilation to provide deeper root-zone soil moisture and net ecosystem exchange of carbon SMAP is scheduled for launch in the 2014-2015 time frame
Topics: Soil map (55%)
Citations
More filters

Journal ArticleDOI
Wouter Dorigo1, Wolfgang Wagner1, R. Hohensinn1, Sebastian Hahn1  +8 moreInstitutions (5)
Abstract: . In situ measurements of soil moisture are invaluable for calibrating and validating land surface models and satellite-based soil moisture retrievals. In addition, long-term time series of in situ soil moisture measurements themselves can reveal trends in the water cycle related to climate or land cover change. Nevertheless, on a worldwide basis the number of meteorological networks and stations measuring soil moisture, in particular on a continuous basis, is still limited and the data they provide lack standardization of technique and protocol. To overcome many of these limitations, the International Soil Moisture Network (ISMN; http://www.ipf.tuwien.ac.at/insitu ) was initiated to serve as a centralized data hosting facility where globally available in situ soil moisture measurements from operational networks and validation campaigns are collected, harmonized, and made available to users. Data collecting networks share their soil moisture datasets with the ISMN on a voluntary and no-cost basis. Incoming soil moisture data are automatically transformed into common volumetric soil moisture units and checked for outliers and implausible values. Apart from soil water measurements from different depths, important metadata and meteorological variables (e.g., precipitation and soil temperature) are stored in the database. These will assist the user in correctly interpreting the soil moisture data. The database is queried through a graphical user interface while output of data selected for download is provided according to common standards for data and metadata. Currently (status May 2011), the ISMN contains data of 19 networks and more than 500 stations located in North America, Europe, Asia, and Australia. The time period spanned by the entire database runs from 1952 until the present, although most datasets have originated during the last decade. The database is rapidly expanding, which means that both the number of stations and the time period covered by the existing stations are still growing. Hence, it will become an increasingly important resource for validating and improving satellite-derived soil moisture products and studying climate related trends. As the ISMN is animated by the scientific community itself, we invite potential networks to enrich the collection by sharing their in situ soil moisture data.

735 citations


Journal ArticleDOI
TL;DR: A retrieval algorithm to deliver global soil moisture (SM) maps with a desired accuracy of 0.04 m3/m3 is given, discusses the caveats, and provides a glimpse of the Cal Val exercises.
Abstract: The Soil Moisture and Ocean Salinity (SMOS) mission is European Space Agency (ESA's) second Earth Explorer Opportunity mission, launched in November 2009. It is a joint program between ESA Centre National d'Etudes Spatiales (CNES) and Centro para el Desarrollo Tecnologico Industrial. SMOS carries a single payload, an L-Band 2-D interferometric radiometer in the 1400-1427 MHz protected band. This wavelength penetrates well through the atmosphere, and hence the instrument probes the earth surface emissivity. Surface emissivity can then be related to the moisture content in the first few centimeters of soil, and, after some surface roughness and temperature corrections, to the sea surface salinity over ocean. The goal of the level 2 algorithm is thus to deliver global soil moisture (SM) maps with a desired accuracy of 0.04 m3/m3. To reach this goal, a retrieval algorithm was developed and implemented in the ground segment which processes level 1 to level 2 data. Level 1 consists mainly of angular brightness temperatures (TB), while level 2 consists of geophysical products in swath mode, i.e., as acquired by the sensor during a half orbit from pole to pole. In this context, a group of institutes prepared the SMOS algorithm theoretical basis documents to be used to produce the operational algorithm. The principle of the SM retrieval algorithm is based on an iterative approach which aims at minimizing a cost function. The main component of the cost function is given by the sum of the squared weighted differences between measured and modeled TB data, for a variety of incidence angles. The algorithm finds the best set of the parameters, e.g., SM and vegetation characteristics, which drive the direct TB model and minimizes the cost function. The end user Level 2 SM product contains SM, vegetation opacity, and estimated dielectric constant of any surface, TB computed at 42.5°, flags and quality indices, and other parameters of interest. This paper gives an overview of the algorithm, discusses the caveats, and provides a glimpse of the Cal Val exercises.

727 citations


Cites background from "The Soil Moisture Active Passive (S..."

  • ...L-Band seemed the best way to go, and as soon as tractable solutions became possible for the antenna, the SMOS [27], [28], Aquarius [29], and SMAP [30], [31] concepts emerged....

    [...]


Journal ArticleDOI
Eric F. Wood1, Joshua K. Roundy1, Tara J. Troy1, L. P. H. van Beek2  +18 moreInstitutions (14)
Abstract: Monitoring Earth's terrestrial water conditions is critically important to many hydrological applications such as global food production; assessing water resources sustainability; and flood, drought, and climate change prediction. These needs have motivated the development of pilot monitoring and prediction systems for terrestrial hydrologic and vegetative states, but to date only at the rather coarse spatial resolutions (∼10–100 km) over continental to global domains. Adequately addressing critical water cycle science questions and applications requires systems that are implemented globally at much higher resolutions, on the order of 1 km, resolutions referred to as hyperresolution in the context of global land surface models. This opinion paper sets forth the needs and benefits for a system that would monitor and predict the Earth's terrestrial water, energy, and biogeochemical cycles. We discuss six major challenges in developing a system: improved representation of surface-subsurface interactions due to fine-scale topography and vegetation; improved representation of land-atmospheric interactions and resulting spatial information on soil moisture and evapotranspiration; inclusion of water quality as part of the biogeochemical cycle; representation of human impacts from water management; utilizing massively parallel computer systems and recent computational advances in solving hyperresolution models that will have up to 109 unknowns; and developing the required in situ and remote sensing global data sets. We deem the development of a global hyperresolution model for monitoring the terrestrial water, energy, and biogeochemical cycles a “grand challenge” to the community, and we call upon the international hydrologic community and the hydrological science support infrastructure to endorse the effort.

592 citations


Journal ArticleDOI
Yuqiong Liu, Wouter Dorigo1, Robert Parinussa2, R.A.M. de Jeu2  +4 moreInstitutions (4)
Abstract: A series of satellite-based passive and active microwave instruments provide soil moisture retrievals spanning altogether more than three decades. This offers the opportunity to generate a combined product that incorporates the advantages of both microwave techniques and spans the observation period starting 1979. However, there are several challenges in developing such a dataset, e.g., differences in instrument specifications result in different absolute soil moisture values, the global passive and active microwave retrieval methods produce conceptually different quantities, and products vary in their relative performances depending on vegetation density. This paper presents an approach for combining four passive microwave products from the VU University Amsterdam/National Aeronautics and Space Administration and two active microwave products from the Vienna University of Technology. First, passive microwave soil moisture retrievals from the Scanning Multichannel Microwave Radiometer (SMMR), the Special Sensor Microwave Imager (SSM/I), and the Tropical Rainfall Measuring Mission microwave imager (TMI) instruments were scaled to the climatology of the Advanced Microwave Scanning Radiometer — Earth Observing System (AMSR-E) derived product and then all four were combined into a single merged passive microwave product. Second, active microwave soil moisture estimates from the European Remote Sensing (ERS) Scatterometer instrument were scaled to the climatology of the Advanced Scatterometer (ASCAT) derived estimates. Both were combined into a merged active microwave product. Finally, the two merged products were rescaled to a common globally available reference soil moisture dataset provided by a land surface model (GLDAS-1-Noah) and then blended into a single passive/active product. Blending of the active and passive data sets was based on their respective sensitivity to vegetation density. While this three step approach imposes the absolute values of the land surface model dataset to the final product, it preserves the relative dynamics (e.g., seasonality and inter-annual variations) of the original satellite derived retrievals. More importantly, the long term changes evident in the original soil moisture products were also preserved. The method presented in this paper allows the long term product to be extended with data from other current and future operational satellites. The multi-decadal blended dataset is expected to enhance our basic understanding of soil moisture in the water, energy and carbon cycles.

569 citations


Journal ArticleDOI
Yi Y. Liu1, Yi Y. Liu2, Yi Y. Liu3, Robert Parinussa3  +6 moreInstitutions (4)
Abstract: . Combining information derived from satellite-based passive and active microwave sensors has the potential to offer improved estimates of surface soil moisture at global scale. We develop and evaluate a methodology that takes advantage of the retrieval characteristics of passive (AMSR-E) and active (ASCAT) microwave satellite estimates to produce an improved soil moisture product. First, volumetric soil water content (m3 m−3) from AMSR-E and degree of saturation (%) from ASCAT are rescaled against a reference land surface model data set using a cumulative distribution function matching approach. While this imposes any bias of the reference on the rescaled satellite products, it adjusts them to the same range and preserves the dynamics of original satellite-based products. Comparison with in situ measurements demonstrates that where the correlation coefficient between rescaled AMSR-E and ASCAT is greater than 0.65 ("transitional regions"), merging the different satellite products increases the number of observations while minimally changing the accuracy of soil moisture retrievals. These transitional regions also delineate the boundary between sparsely and moderately vegetated regions where rescaled AMSR-E and ASCAT, respectively, are used for the merged product. Therefore the merged product carries the advantages of better spatial coverage overall and increased number of observations, particularly for the transitional regions. The combination method developed has the potential to be applied to existing microwave satellites as well as to new missions. Accordingly, a long-term global soil moisture dataset can be developed and extended, enhancing basic understanding of the role of soil moisture in the water, energy and carbon cycles.

540 citations


References
More filters

Journal ArticleDOI
12 Apr 2010-
TL;DR: The SMOS satellite was launched successfully on November 2, 2009, and will achieve an unprecedented maximum spatial resolution of 50 km at L-band over land (43 km on average over the field of view), providing multiangular dual polarized (or fully polarized) brightness temperatures over the globe.
Abstract: It is now well understood that data on soil moisture and sea surface salinity (SSS) are required to improve meteorological and climate predictions. These two quantities are not yet available globally or with adequate temporal or spatial sampling. It is recognized that a spaceborne L-band radiometer with a suitable antenna is the most promising way of fulfilling this gap. With these scientific objectives and technical solution at the heart of a proposed mission concept the European Space Agency (ESA) selected the Soil Moisture and Ocean Salinity (SMOS) mission as its second Earth Explorer Opportunity Mission. The development of the SMOS mission was led by ESA in collaboration with the Centre National d'Etudes Spatiales (CNES) in France and the Centro para el Desarrollo Tecnologico Industrial (CDTI) in Spain. SMOS carries a single payload, an L-Band 2-D interferometric radiometer operating in the 1400-1427-MHz protected band . The instrument receives the radiation emitted from Earth's surface, which can then be related to the moisture content in the first few centimeters of soil over land, and to salinity in the surface waters of the oceans. SMOS will achieve an unprecedented maximum spatial resolution of 50 km at L-band over land (43 km on average over the field of view), providing multiangular dual polarized (or fully polarized) brightness temperatures over the globe. SMOS has a revisit time of less than 3 days so as to retrieve soil moisture and ocean salinity data, meeting the mission's science objectives. The caveat in relation to its sampling requirements is that SMOS will have a somewhat reduced sensitivity when compared to conventional radiometers. The SMOS satellite was launched successfully on November 2, 2009.

1,325 citations


Reference EntryDOI
Richard K. Moore1Institutions (1)
27 Dec 1999-
Abstract: The sections in this article are 1 Radiometers 2 Radar Scattering 3 Radar Scatterometers 4 Radar Altimeters 5 Ground-Penetrating Radars 6 Imaging Radars 7 Real-Aperture Radars 8 Synthetic-Aperture Radars

1,093 citations


Book
01 Jan 1986-
Abstract: Monumental as a compilation of the present engineering state of the art of microwave remote sensing. -- International Journal of Remote Sensing

959 citations


Journal ArticleDOI
P. Dubois1, J.J. van Zyl1, T. Engman2Institutions (2)
TL;DR: An empirical algorithm for the retrieval of soil moisture content and surface root mean square (RMS) height from remotely sensed radar data was developed using scatterometer data and inversion results indicate that significant amounts of vegetation cause the algorithm to underestimate soil moisture and overestimate RMS height.
Abstract: An empirical algorithm for the retrieval of soil moisture content and surface root mean square (RMS) height from remotely sensed radar data was developed using scatterometer data. The algorithm is optimized for bare surfaces and requires two copolarized channels at a frequency between 1.5 and 11 GHz. It gives best results for kh/spl les/2.5, /spl mu//sub /spl upsi///spl les/35%, and /spl theta//spl ges/30/spl deg/. Omitting the usually weaker hv-polarized returns makes the algorithm less sensitive to system cross-talk and system noise, simplifies the calibration process and adds robustness to the algorithm in the presence of vegetation. However, inversion results indicate that significant amounts of vegetation (NDVI>0.4) cause the algorithm to underestimate soil moisture and overestimate RMS height. A simple criteria based on the /spl sigma//sub hv//sup 0///spl sigma//sub vv//sup 0/ ratio is developed to select the areas where the inversion is not impaired by the vegetation. The inversion accuracy is assessed on the original scatterometer data sets but also on several SAR data sets by comparing the derived soil moisture values with in-situ measurements collected over a variety of scenes between 1991 and 1994. Both spaceborne (SIR-C) and airborne (AIRSAR) data are used in the test. Over this large sample of conditions, the RMS error in the soil moisture estimate is found to be less than 4.2% soil moisture. >

955 citations


"The Soil Moisture Active Passive (S..." refers background in this paper

  • ...Various algorithms for retrieval of soil moisture from radar backscatter have been developed, but they perform adequately only in low-vegetation water content conditions [27]....

    [...]


Journal ArticleDOI
Abstract: Research has shown that soil moisture information can be retrieved by passive microwave remote sensing. This is even possible when there is a vegetation canopy present if the effects of the vegetation are corrected for. Vegetation correction algorithms must attempt to include all significant physical parameters, yet they must also only require data that can be readily obtained. Previous research proposed a model that attempted to meet these requirements. Critical to this model is the estimation of a vegetation parameter b that characterizes the canopy. In this study we evaluated published data to determine the functional dependence of this parameter on vegetation characteristics.

834 citations


Additional excerpts

  • ...The studies summarized in [17] established a...

    [...]


Performance
Metrics
No. of citations received by the Paper in previous years
YearCitations
20223
2021270
2020233
2019239
2018189
2017229