scispace - formally typeset
Search or ask a question
Journal ArticleDOI

The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons

01 Apr 2016-Nature Genetics (Nature Publishing Group)-Vol. 48, Iss: 4, pp 427-437
TL;DR: In this article, the authors sequenced the genome of spotted gar (Lepisosteus oculatus), whose lineage diverged from teleosts before teleost genome duplication (TGD).
Abstract: To connect human biology to fish biomedical models, we sequenced the genome of spotted gar (Lepisosteus oculatus), whose lineage diverged from teleosts before teleost genome duplication (TGD). The slowly evolving gar genome has conserved in content and size many entire chromosomes from bony vertebrate ancestors. Gar bridges teleosts to tetrapods by illuminating the evolution of immunity, mineralization and development (mediated, for example, by Hox, ParaHox and microRNA genes). Numerous conserved noncoding elements (CNEs; often cis regulatory) undetectable in direct human-teleost comparisons become apparent using gar: functional studies uncovered conserved roles for such cryptic CNEs, facilitating annotation of sequences identified in human genome-wide association studies. Transcriptomic analyses showed that the sums of expression domains and expression levels for duplicated teleost genes often approximate the patterns and levels of expression for gar genes, consistent with subfunctionalization. The gar genome provides a resource for understanding evolution after genome duplication, the origin of vertebrate genomes and the function of human regulatory sequences.

Content maybe subject to copyright    Report

Citations
More filters
14 Jan 2013
TL;DR: In this paper, the authors describe an active project that aims to identify and phenotype the disruptive mutations in every zebrafish protein-coding gene, using a well-annotated Zebrafish reference genome sequence, high-throughput sequencing and efficient chemical mutagenesis.
Abstract: Since the publication of the human reference genome, the identities of specific genes associated with human diseases are being discovered at a rapid rate. A central problem is that the biological activity of these genes is often unclear. Detailed investigations in model vertebrate organisms, typically mice, have been essential for understanding the activities of many orthologues of these disease-associated genes. Although gene-targeting approaches and phenotype analysis have led to a detailed understanding of nearly 6,000 protein-coding genes, this number falls considerably short of the more than 22,000 mouse protein-coding genes. Similarly, in zebrafish genetics, one-by-one gene studies using positional cloning, insertional mutagenesis, antisense morpholino oligonucleotides, targeted re-sequencing, and zinc finger and TAL endonucleases have made substantial contributions to our understanding of the biological activity of vertebrate genes, but again the number of genes studied falls well short of the more than 26,000 zebrafish protein-coding genes. Importantly, for both mice and zebrafish, none of these strategies are particularly suited to the rapid generation of knockouts in thousands of genes and the assessment of their biological activity. Here we describe an active project that aims to identify and phenotype the disruptive mutations in every zebrafish protein-coding gene, using a well-annotated zebrafish reference genome sequence, high-throughput sequencing and efficient chemical mutagenesis. So far we have identified potentially disruptive mutations in more than 38% of all known zebrafish protein-coding genes. We have developed a multi-allelic phenotyping scheme to efficiently assess the effects of each allele during embryogenesis and have analysed the phenotypic consequences of over 1,000 alleles. All mutant alleles and data are available to the community and our phenotyping scheme is adaptable to phenotypic analysis beyond embryogenesis.

503 citations

Journal ArticleDOI
TL;DR: A comprehensive landscape of different modes of gene duplication across the plant kingdom is identified by comparing 141 genomes, which provides a solid foundation for further investigation of the dynamic evolution of duplicate genes.
Abstract: The sharp increase of plant genome and transcriptome data provide valuable resources to investigate evolutionary consequences of gene duplication in a range of taxa, and unravel common principles underlying duplicate gene retention. We survey 141 sequenced plant genomes to elucidate consequences of gene and genome duplication, processes central to the evolution of biodiversity. We develop a pipeline named DupGen_finder to identify different modes of gene duplication in plants. Genes derived from whole-genome, tandem, proximal, transposed, or dispersed duplication differ in abundance, selection pressure, expression divergence, and gene conversion rate among genomes. The number of WGD-derived duplicate genes decreases exponentially with increasing age of duplication events—transposed duplication- and dispersed duplication-derived genes declined in parallel. In contrast, the frequency of tandem and proximal duplications showed no significant decrease over time, providing a continuous supply of variants available for adaptation to continuously changing environments. Moreover, tandem and proximal duplicates experienced stronger selective pressure than genes formed by other modes and evolved toward biased functional roles involved in plant self-defense. The rate of gene conversion among WGD-derived gene pairs declined over time, peaking shortly after polyploidization. To provide a platform for accessing duplicated gene pairs in different plants, we constructed the Plant Duplicate Gene Database. We identify a comprehensive landscape of different modes of gene duplication across the plant kingdom by comparing 141 genomes, which provides a solid foundation for further investigation of the dynamic evolution of duplicate genes.

461 citations

Journal ArticleDOI
TL;DR: The PhyloFish database is developed to provide de novo assembled gene repertoires in 23 different ray-finned fish species including two holosteans and 21 teleosts and to obtain the most exhaustive gene repertoire possible in each species that allows between-species comparisons to study the evolution of gene expression in different lineages.
Abstract: With more than 30,000 species, ray-finned fish represent approximately half of vertebrates. The evolution of ray-finned fish was impacted by several whole genome duplication (WGD) events including a teleost-specific WGD event (TGD) that occurred at the root of the teleost lineage about 350 million years ago (Mya) and more recent WGD events in salmonids, carps, suckers and others. In plants and animals, WGD events are associated with adaptive radiations and evolutionary innovations. WGD-spurred innovation may be especially relevant in the case of teleost fish, which colonized a wide diversity of habitats on earth, including many extreme environments. Fish biodiversity, the use of fish models for human medicine and ecological studies, and the importance of fish in human nutrition, fuel an important need for the characterization of gene expression repertoires and corresponding evolutionary histories of ray-finned fish genes. To this aim, we performed transcriptome analyses and developed the PhyloFish database to provide (i) de novo assembled gene repertoires in 23 different ray-finned fish species including two holosteans (i.e. a group that diverged from teleosts before TGD) and 21 teleosts (including six salmonids), and (ii) gene expression levels in ten different tissues and organs (and embryos for many) in the same species. This resource was generated using a common deep RNA sequencing protocol to obtain the most exhaustive gene repertoire possible in each species that allows between-species comparisons to study the evolution of gene expression in different lineages. The PhyloFish database described here can be accessed and searched using RNAbrowse, a simple and efficient solution to give access to RNA-seq de novo assembled transcripts.

260 citations


Cites methods from "The spotted gar genome illuminates ..."

  • ...Finally, the PhyloFish database was recently used by the Spotted Gar Genome Consortium to thoroughly analyze the evolution of gene expression after TGD using spotted gar, zebrafish, and medaka [37]....

    [...]

Journal ArticleDOI
TL;DR: A new assembly of the sea lamprey germline genome identifies genomic regions that are systematically eliminated from somatic tissue during early development and gives new insight into vertebrate evolution.
Abstract: The sea lamprey (Petromyzon marinus) serves as a comparative model for reconstructing vertebrate evolution. To enable more informed analyses, we developed a new assembly of the lamprey germline genome that integrates several complementary data sets. Analysis of this highly contiguous (chromosome-scale) assembly shows that both chromosomal and whole-genome duplications have played significant roles in the evolution of ancestral vertebrate and lamprey genomes, including chromosomes that carry the six lamprey HOX clusters. The assembly also contains several hundred genes that are reproducibly eliminated from somatic cells during early development in lamprey. Comparative analyses show that gnathostome (mouse) homologs of these genes are frequently marked by polycomb repressive complexes (PRCs) in embryonic stem cells, suggesting overlaps in the regulatory logic of somatic DNA elimination and bivalent states that are regulated by early embryonic PRCs. This new assembly will enhance diverse studies that are informed by lampreys' unique biology and evolutionary/comparative perspective.

232 citations

Journal ArticleDOI
TL;DR: It is shown how the karyotypes of amphioxus and diverse vertebrates are derived from 17 ancestral chordate linkage groups (and 19 ancestral bilaterian groups) by fusion, rearrangement and duplication.
Abstract: Although it is widely believed that early vertebrate evolution was shaped by ancient whole-genome duplications, the number, timing and mechanism of these events remain elusive. Here, we infer the history of vertebrates through genomic comparisons with a new chromosome-scale sequence of the invertebrate chordate amphioxus. We show how the karyotypes of amphioxus and diverse vertebrates are derived from 17 ancestral chordate linkage groups (and 19 ancestral bilaterian groups) by fusion, rearrangement and duplication. We resolve two distinct ancient duplications based on patterns of chromosomal conserved synteny. All extant vertebrates share the first duplication, which occurred in the mid/late Cambrian by autotetraploidization (that is, direct genome doubling). In contrast, the second duplication is found only in jawed vertebrates and occurred in the mid–late Ordovician by allotetraploidization (that is, genome duplication following interspecific hybridization) from two now-extinct progenitors. This complex genomic history parallels the diversification of vertebrate lineages in the fossil record. Genomic comparisons with a new amphioxus chromosome-scale genome assembly reveal details of the early evolution of vertebrate genomes.

200 citations

References
More filters
Journal Article
TL;DR: Copyright (©) 1999–2012 R Foundation for Statistical Computing; permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and permission notice are preserved on all copies.
Abstract: Copyright (©) 1999–2012 R Foundation for Statistical Computing. Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this permission notice are preserved on all copies. Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying, provided that the entire resulting derived work is distributed under the terms of a permission notice identical to this one. Permission is granted to copy and distribute translations of this manual into another language, under the above conditions for modified versions, except that this permission notice may be stated in a translation approved by the R Core Team.

272,030 citations

Journal ArticleDOI
TL;DR: SAMtools as discussed by the authors implements various utilities for post-processing alignments in the SAM format, such as indexing, variant caller and alignment viewer, and thus provides universal tools for processing read alignments.
Abstract: Summary: The Sequence Alignment/Map (SAM) format is a generic alignment format for storing read alignments against reference sequences, supporting short and long reads (up to 128 Mbp) produced by different sequencing platforms. It is flexible in style, compact in size, efficient in random access and is the format in which alignments from the 1000 Genomes Project are released. SAMtools implements various utilities for post-processing alignments in the SAM format, such as indexing, variant caller and alignment viewer, and thus provides universal tools for processing read alignments. Availability: http://samtools.sourceforge.net Contact: [email protected]

45,957 citations

Journal ArticleDOI
TL;DR: Burrows-Wheeler Alignment tool (BWA) is implemented, a new read alignment package that is based on backward search with Burrows–Wheeler Transform (BWT), to efficiently align short sequencing reads against a large reference sequence such as the human genome, allowing mismatches and gaps.
Abstract: Motivation: The enormous amount of short reads generated by the new DNA sequencing technologies call for the development of fast and accurate read alignment programs. A first generation of hash table-based methods has been developed, including MAQ, which is accurate, feature rich and fast enough to align short reads from a single individual. However, MAQ does not support gapped alignment for single-end reads, which makes it unsuitable for alignment of longer reads where indels may occur frequently. The speed of MAQ is also a concern when the alignment is scaled up to the resequencing of hundreds of individuals. Results: We implemented Burrows-Wheeler Alignment tool (BWA), a new read alignment package that is based on backward search with Burrows–Wheeler Transform (BWT), to efficiently align short sequencing reads against a large reference sequence such as the human genome, allowing mismatches and gaps. BWA supports both base space reads, e.g. from Illumina sequencing machines, and color space reads from AB SOLiD machines. Evaluations on both simulated and real data suggest that BWA is ~10–20× faster than MAQ, while achieving similar accuracy. In addition, BWA outputs alignment in the new standard SAM (Sequence Alignment/Map) format. Variant calling and other downstream analyses after the alignment can be achieved with the open source SAMtools software package. Availability: http://maq.sourceforge.net Contact: [email protected]

43,862 citations

Journal ArticleDOI
TL;DR: This work presents some of the most notable new features and extensions of RAxML, such as a substantial extension of substitution models and supported data types, the introduction of SSE3, AVX and AVX2 vector intrinsics, techniques for reducing the memory requirements of the code and a plethora of operations for conducting post-analyses on sets of trees.
Abstract: Motivation: Phylogenies are increasingly used in all fields of medical and biological research. Moreover, because of the next-generation sequencing revolution, datasets used for conducting phylogenetic analyses grow at an unprecedented pace. RAxML (Randomized Axelerated Maximum Likelihood) is a popular program for phylogenetic analyses of large datasets under maximum likelihood. Since the last RAxML paper in 2006, it has been continuously maintained and extended to accommodate the increasingly growing input datasets and to serve the needs of the user community. Results: I present some of the most notable new features and extensions of RAxML, such as a substantial extension of substitution models and supported data types, the introduction of SSE3, AVX and AVX2 vector intrinsics, techniques for reducing the memory requirements of the code and a plethora of operations for conducting postanalyses on sets of trees. In addition, an up-to-date 50-page user manual covering all new RAxML options is available. Availability and implementation: The code is available under GNU

23,838 citations

Journal ArticleDOI
TL;DR: Bowtie extends previous Burrows-Wheeler techniques with a novel quality-aware backtracking algorithm that permits mismatches and can be used simultaneously to achieve even greater alignment speeds.
Abstract: Bowtie is an ultrafast, memory-efficient alignment program for aligning short DNA sequence reads to large genomes. For the human genome, Burrows-Wheeler indexing allows Bowtie to align more than 25 million reads per CPU hour with a memory footprint of approximately 1.3 gigabytes. Bowtie extends previous Burrows-Wheeler techniques with a novel quality-aware backtracking algorithm that permits mismatches. Multiple processor cores can be used simultaneously to achieve even greater alignment speeds. Bowtie is open source http://bowtie.cbcb.umd.edu.

20,335 citations

Related Papers (5)