scispace - formally typeset
Search or ask a question
Journal ArticleDOI

The Star Formation Efficiency in Nearby Galaxies: Measuring Where Gas Forms Stars Effectively

TL;DR: In this paper, the star formation efficiency (SFE) per unit of gas in 23 nearby galaxies and compare it with expectations from proposed star formation laws and thresholds was measured, and the authors interpreted this decline as a strong dependence of giant molecular cloud (GMC) formation on environment.
Abstract: We measure the star formation efficiency (SFE), the star formation rate (SFR) per unit of gas, in 23 nearby galaxies and compare it with expectations from proposed star formation laws and thresholds. We use H I maps from The H I Nearby Galaxy Survey (THINGS) and derive H2 maps of CO measured by HERA CO-Line Extragalactic Survey and Berkeley-Illinois-Maryland Association Survey of Nearby Galaxies. We estimate the SFR by combining Galaxy Evolution Explorer (GALEX) far-ultraviolet maps and the Spitzer Infrared Nearby Galaxies Survey (SINGS) 24 ?m maps, infer stellar surface density profiles from SINGS 3.6 ?m data, and use kinematics from THINGS. We measure the SFE as a function of the free fall and orbital timescales, midplane gas pressure, stability of the gas disk to collapse (including the effects of stars), the ability of perturbations to grow despite shear, and the ability of a cold phase to form. In spirals, the SFE of H2 alone is nearly constant at (5.25 ? 2.5) ? 10?10 yr?1 (equivalent to an H2 depletion time of 1.9 ? 109 yr) as a function of all of these variables at our 800 pc resolution. Where the interstellar medium (ISM) is mostly H I, however, the SFE decreases with increasing radius in both spiral and dwarf galaxies, a decline reasonably described by an exponential with scale length 0.2r 25-0.25r 25. We interpret this decline as a strong dependence of giant molecular cloud (GMC) formation on environment. The ratio of molecular-to-atomic gas appears to be a smooth function of radius, stellar surface density, and pressure spanning from the H2-dominated to H I-dominated ISM. The radial decline in SFE is too steep to be reproduced only by increases in the free-fall time or orbital time. Thresholds for large-scale instability suggest that our disks are stable or marginally stable and do not show a clear link to the declining SFE. We suggest that ISM physics below the scales that we observe?phase balance in the H I, H2 formation and destruction, and stellar feedback?governs the formation of GMCs from H I.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors review progress over the past decade in observations of large-scale star formation, with a focus on the interface between extragalactic and Galactic studies.
Abstract: We review progress over the past decade in observations of large-scale star formation, with a focus on the interface between extragalactic and Galactic studies. Methods of measuring gas contents and star-formation rates are discussed, and updated prescriptions for calculating star-formation rates are provided. We review relations between star formation and gas on scales ranging from entire galaxies to individual molecular clouds.

2,525 citations


Cites background from "The Star Formation Efficiency in Ne..."

  • ...Recent analyses have become available (Kennicutt et al. 2007; Bigiel et al. 2008, 2010, 2011; Leroy et al. 2008; Blanc et al. 2009; Eales et al. 2010; Verley et al. 2010; Liu et al. 2011; Rahman et al. 2011, 2012; Schruba et al. 2011), and several other major studies are ongoing....

    [...]

  • ...…instabilities in the disk (e.g., Q instabilities), rather than with atomic or molecular phase transitions (e.g., Kennicutt 1989;Martin & Kennicutt 2001), but recent observations and theoretical analyses have raised questions about this interpretation (e.g., Schaye 2004; Leroy et al. 2008)....

    [...]

  • ...…of the star formation law derived in this way have been carried out by numerous authors (e.g., Kennicutt 1989; Martin & Kennicutt 2001; Wong & Blitz 2002; Boissier et al. 2003; Heyer et al. 2004; Komugi et al. 2005; Schuster et al. 2007; Leroy et al. 2008; Schruba et al. 2011; Gratier et al. 2010)....

    [...]

  • ...A review of many of the theoretical ideas can be found in McKee & Ostriker (2007), and an informative summary of the main models in the literature up to 2008 can be found in Leroy et al. (2008)....

    [...]

  • ...…speaking this scaling relation only applies to the phase balance of cold gas rather than the SFR, but it can be recast into a predicted star formation law if assumptions are made about the scaling between the SFR and the molecular gas components (e.g., Blitz & Rosolowsky 2006; Leroy et al. 2008)....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors review the theoretical underpinning, techniques, and results of efforts to estimate the CO-to-H2 conversion factor in different environments, and recommend a conversion factor XCO = 2×10 20 cm −2 (K km s −1 ) −1 with ±30% uncertainty.
Abstract: CO line emission represents the most accessible and widely used tracer of the molecular interstellar medium. This renders the translation of observed CO intensity into total H2 gas mass critical to understand star formation and the interstellar medium in our Galaxy and beyond. We review the theoretical underpinning, techniques, and results of efforts to estimate this CO-to-H2 “conversion factor,” XCO, in different environments. In the Milky Way disk, we recommend a conversion factor XCO = 2×10 20 cm −2 (K km s −1 ) −1 with ±30% uncertainty. Studies of other “normal galaxies” return similar values in Milky Way-like disks, but with greater scatter and systematic uncertainty. Departures from this Galactic conversion factor are both observed and expected. Dust-based determinations, theoretical arguments, and scaling relations all suggest that XCO increases with decreasing metallicity, turning up sharply below metallicity ≈ 1/3–1/2 solar in a manner consistent with model predictions that identify shielding as a key parameter. Based on spectral line modeling and dust observations, XCO appears to drop in the central, bright regions of some but not all galaxies, often coincident with regions of bright CO emission and high stellar surface density. This lower XCO is also present in the overwhelmingly molecular interstellar medium of starburst galaxies, where several lines of evidence point to a lower CO-to-H2 conversion factor. At high redshift, direct evidence regarding the conversion factor remains scarce; we review what is known based on dynamical modeling and other arguments. Subject headings: ISM: general — ISM: molecules — galaxies: ISM — radio lines: ISM

2,004 citations

Journal ArticleDOI
TL;DR: The HI Nearby Galaxy Survey (THINGS) as discussed by the authors is a high spectral (≤52kms −1 ) and spatial (∼ 6 ′′ ) resolution survey of HI emission in 34 nearby galaxies obtained using the NRAO Very Large Array (VLA).
Abstract: We present “The HI Nearby Galaxy Survey (THINGS)”, a high spectral (≤52kms −1 ) and spatial (∼ 6 ′′ ) resolution survey of HI emission in 34 nearby galaxies obtained using the NRAO Very Large Array (VLA) The overarching scientific goal of THINGS is to investigate fundamental characteristics of the interstellar medium (ISM) related to galaxy morphology, star formation and mass distribution across the Hubble sequence Unique characteristics of the THINGS database are the homogeneous sensitivity as well as spatial and velocity resolution of the HI data which is at the limit of what can be achieved with the VLA for a significant number of galaxies A sample of 34 objects at distances 2 < D <15 Mpc (resulting in linear resolutions of ∼100 to 500pc) are targeted in THINGS, covering a wide range of star formation rates (∼ 10 −3 to 6 M⊙ yr −1 ), total HI masses MHI (001 to 14×10 9 M⊙), absolute luminosities MB (–115 to –217mag) and metallicities (75 to 92 in units of 12+log[O/H]) We describe the setup of the VLA observations, the data reduction procedures and the creation of the final THINGS data products We present an atlas of the integrated HI maps, the velocity fields, the second moment (velocity dispersion) maps and individual channel maps of each THINGS galaxy The THINGS data products are made publicly available through a dedicated webpage Accompanying THINGS papers address issues such as the small–scale structure of the ISM, the (dark) matter distribution in THINGS galaxies, and the processes leading to star formation Subject headings: surveys — galaxies: structure — galaxies: ISM — ISM: general — ISM: atoms — radio lines: galaxies

1,354 citations

Journal ArticleDOI
TL;DR: In the last decade, observations of the cool interstellar medium (ISM) in distant galaxies via molecular and atomic fine structure line (FSL) emission have gone from a curious look into a few extreme, rare objects to a mainstream tool for studying galaxy formation out to the highest redshifts as mentioned in this paper.
Abstract: Over the past decade, observations of the cool interstellar medium (ISM) in distant galaxies via molecular and atomic fine structure line (FSL) emission have gone from a curious look into a few extreme, rare objects to a mainstream tool for studying galaxy formation out to the highest redshifts. Molecular gas has been observed in close to 200 galaxies at z > 1, including numerous AGN host-galaxies out to z ∼ 7, highly star-forming submillimeter galaxies, and increasing samples of main-sequence color-selected star-forming galaxies at z ∼ 1.5 to 2.5. Studies have moved well beyond simple detections to dynamical imaging at kiloparsec-scale resolution and multiline, multispecies studies that determine the physical conditions in the ISM in early galaxies. Observations of the cool gas are the required complement to studies of the stellar density and star-formation history of the Universe as they reveal the phase of the ISM that immediately precedes star formation in galaxies. Current observations suggest that t...

1,041 citations


Cites background from "The Star Formation Efficiency in Ne..."

  • ...The molecular gas phase is thought to immediately preceed star formation (e.g. Leroy et al. 2008, Schruba et al. 2011) and this phase is thus most relevant to study a galaxy’s potential to form new stars....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors present evidence for very high gas fractions and extended molecular gas reservoirs in normal, near-infrared selected (BzK) galaxies at z~1.5, based on multi-configuration CO[2-1] observations obtained at the IRAM PdBI.
Abstract: We present evidence for very high gas fractions and extended molecular gas reservoirs in normal, near-infrared selected (BzK) galaxies at z~1.5, based on multi-configuration CO[2-1] observations obtained at the IRAM PdBI. Six of the six galaxies observed were securely detected. High resolution observations resolve the CO emission in four of them, implying sizes of order of 6-11 kpc and suggesting the presence of rotation. The UV morphologies are consistent with clumpy, unstable disks, and the UV sizes are consistent with the CO sizes. The star formation efficiencies are homogeneously low and similar to local spirals - the resulting gas depletion times are ~0.5 Gyr, much higher than what is seen in high-z submm galaxies and quasars. The CO luminosities can be predicted to within 0.15 dex from the star formation rates and stellar masses, implying a tight correlation of the gas mass with these quantities. We use dynamical models of clumpy disk galaxies to derive dynamical masses. These models are able to reproduce the peculiar spectral line shapes of the CO emission. After accounting for the stellar and dark matter masses we derive gas masses of 0.4-1.2x10^11 Msun. The conversion factor is very high: alpha_CO=3.6+-0.8, consistent with the Galaxy but four times higher than that of local ultra-luminous IR galaxies. The gas accounts for an impressive 50-65% of the baryons within the galaxies' half light radii. We are witnessing truly gas-dominated galaxies at z~1.5, a finding that explains the high specific SFRs observed for z>1 galaxies. The BzK galaxies can be viewed as scaled-up versions of local disk galaxies, with low efficiency star formation taking place inside extended, low excitation gas disks. They are markedly different than local ULIRGs and high-z submm galaxies, which have more excited and compact gas.

997 citations


Cites background or result from "The Star Formation Efficiency in Ne..."

  • ...…recent results of Daddi et al. 2009ab and Frayer et al. 2008), quasars (QSOs; Riechers et al. 2006 Solomon & van den Bout 2005), local ULIRGs (Solomon et al. 1997) and local spirals taken from the HERACLES survey (Leroy et al. 2008; 2009) and from the Virgo Cluster survey of Wilson et al. (2009)....

    [...]

  • ...However, we expect the vast majority of the hydrogen to be molecular given that the high observed densities and expected pressures in the interstellar medium of these galaxies (see, e.g., Blitz & Rosolowsky 2006; Leroy et al. 2008; Obreschkow & Rawlings 2009)....

    [...]

  • ...This is in agreement with what is found for our sources (see Section 2) as well as local disks (Leroy et al. 2008)....

    [...]

  • ...For comparison, the total gas fractions (including HI, H2 and helium) in local spiral galaxies with the same mass is about 20% (Leroy et al. 2008), and about 7% if including only H2 and helium (i.e., restricting to the stellar disk)....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: In this article, a reprocessed composite of the COBE/DIRBE and IRAS/ISSA maps, with the zodiacal foreground and confirmed point sources removed, is presented.
Abstract: We present a full-sky 100 μm map that is a reprocessed composite of the COBE/DIRBE and IRAS/ISSA maps, with the zodiacal foreground and confirmed point sources removed. Before using the ISSA maps, we remove the remaining artifacts from the IRAS scan pattern. Using the DIRBE 100 and 240 μm data, we have constructed a map of the dust temperature so that the 100 μm map may be converted to a map proportional to dust column density. The dust temperature varies from 17 to 21 K, which is modest but does modify the estimate of the dust column by a factor of 5. The result of these manipulations is a map with DIRBE quality calibration and IRAS resolution. A wealth of filamentary detail is apparent on many different scales at all Galactic latitudes. In high-latitude regions, the dust map correlates well with maps of H I emission, but deviations are coherent in the sky and are especially conspicuous in regions of saturation of H I emission toward denser clouds and of formation of H2 in molecular clouds. In contrast, high-velocity H I clouds are deficient in dust emission, as expected. To generate the full-sky dust maps, we must first remove zodiacal light contamination, as well as a possible cosmic infrared background (CIB). This is done via a regression analysis of the 100 μm DIRBE map against the Leiden-Dwingeloo map of H I emission, with corrections for the zodiacal light via a suitable expansion of the DIRBE 25 μm flux. This procedure removes virtually all traces of the zodiacal foreground. For the 100 μm map no significant CIB is detected. At longer wavelengths, where the zodiacal contamination is weaker, we detect the CIB at surprisingly high flux levels of 32 ± 13 nW m-2 sr-1 at 140 μm and of 17 ± 4 nW m-2 sr-1 at 240 μm (95% confidence). This integrated flux ~2 times that extrapolated from optical galaxies in the Hubble Deep Field. The primary use of these maps is likely to be as a new estimator of Galactic extinction. To calibrate our maps, we assume a standard reddening law and use the colors of elliptical galaxies to measure the reddening per unit flux density of 100 μm emission. We find consistent calibration using the B-R color distribution of a sample of the 106 brightest cluster ellipticals, as well as a sample of 384 ellipticals with B-V and Mg line strength measurements. For the latter sample, we use the correlation of intrinsic B-V versus Mg2 index to tighten the power of the test greatly. We demonstrate that the new maps are twice as accurate as the older Burstein-Heiles reddening estimates in regions of low and moderate reddening. The maps are expected to be significantly more accurate in regions of high reddening. These dust maps will also be useful for estimating millimeter emission that contaminates cosmic microwave background radiation experiments and for estimating soft X-ray absorption. We describe how to access our maps readily for general use.

15,988 citations

Journal ArticleDOI
TL;DR: In this paper, the authors presented a reprocessed composite of the COBE/DIRBE and IRAS/ISSA maps, with the zodiacal foreground and confirmed point sources removed.
Abstract: We present a full sky 100 micron map that is a reprocessed composite of the COBE/DIRBE and IRAS/ISSA maps, with the zodiacal foreground and confirmed point sources removed. Before using the ISSA maps, we remove the remaining artifacts from the IRAS scan pattern. Using the DIRBE 100 micron and 240 micron data, we have constructed a map of the dust temperature, so that the 100 micron map can be converted to a map proportional to dust column density. The result of these manipulations is a map with DIRBE-quality calibration and IRAS resolution. To generate the full sky dust maps, we must first remove zodiacal light contamination as well as a possible cosmic infrared background (CIB). This is done via a regression analysis of the 100 micron DIRBE map against the Leiden- Dwingeloo map of H_I emission, with corrections for the zodiacal light via a suitable expansion of the DIRBE 25 micron flux. For the 100 micron map, no significant CIB is detected. In the 140 micron and 240 micron maps, where the zodiacal contamination is weaker, we detect the CIB at surprisingly high flux levels of 32 \pm 13 nW/m^2/sr at 140 micron, and 17 \pm 4 nW/m^2/sr at 240 micron (95% confidence). This integrated flux is ~2 times that extrapolated from optical galaxies in the Hubble Deep Field. The primary use of these maps is likely to be as a new estimator of Galactic extinction. We demonstrate that the new maps are twice as accurate as the older Burstein-Heiles estimates in regions of low and moderate reddening. These dust maps will also be useful for estimating millimeter emission that contaminates CMBR experiments and for estimating soft X-ray absorption.

14,295 citations

Journal ArticleDOI
TL;DR: In this article, the average extinction law over the 3.5 micron to 0.125 wavelength range was derived for both diffuse and dense regions of the interstellar medium. And the validity of the law over a large wavelength interval suggests that the processes which modify the sizes and compositions of grains are stochastic in nature.
Abstract: The parameterized extinction data of Fitzpatrick and Massa (1986, 1988) for the ultraviolet and various sources for the optical and near-infrared are used to derive a meaningful average extinction law over the 3.5 micron to 0.125 wavelength range which is applicable to both diffuse and dense regions of the interstellar medium. The law depends on only one parameter R(V) = A(V)/E(B-V). An analytic formula is given for the mean extinction law which can be used to calculate color excesses or to deredden observations. The validity of the law over a large wavelength interval suggests that the processes which modify the sizes and compositions of grains are stochastic in nature and very efficient.

11,704 citations

Journal ArticleDOI
TL;DR: In this paper, the evolutionary significance of the observed luminosity function for main-sequence stars in the solar neighborhood is discussed and it is shown that stars move off the main sequence after burning about 10 per cent of their hydrogen mass and that stars have been created at a uniform rate in a solar neighborhood for the last five billion years.
Abstract: The evolutionary significance of the observed luminosity function for main-sequence stars in the solar neighborhood is discussed. The hypothesis is made that stars move off the main sequence after burning about 10 per cent of their hydrogen mass and that stars have been created at a uniform rate in the solar neighborhood for the last five billion years. Using this hypothesis and the observed luminosity function, the rate of star creation as a function of stellar mass is calculated. The total number and mass of stars which have moved off the main sequence is found to be comparable with the total number of white dwarfs and with the total mass of all fainter main-sequence stars, respectively.

8,607 citations

Journal ArticleDOI
TL;DR: A review of the present-day mass function and initial mass function in various components of the Galaxy (disk, spheroid, young, and globular clusters) and in conditions characteristic of early star formation is presented in this paper.
Abstract: We review recent determinations of the present-day mass function (PDMF) and initial mass function (IMF) in various components of the Galaxy—disk, spheroid, young, and globular clusters—and in conditions characteristic of early star formation. As a general feature, the IMF is found to depend weakly on the environment and to be well described by a power-law form forM , and a lognormal form below, except possibly for m!1 early star formation conditions. The disk IMF for single objects has a characteristic mass around M , m!0.08 c and a variance in logarithmic mass , whereas the IMF for multiple systems hasM , and . j!0.7 m!0.2 j!0.6 c The extension of the single MF into the brown dwarf regime is in good agreement with present estimates of L- and T-dwarf densities and yields a disk brown dwarf number density comparable to the stellar one, n!n! BD " pc !3 .T he IMF of young clusters is found to be consistent with the disk fi eld IMF, providing the same correction 0.1 for unresolved binaries, confirming the fact that young star clusters and disk field stars represent the same stellar population. Dynamical effects, yielding depletion of the lowest mass objects, are found to become consequential for ages!130 Myr. The spheroid IMF relies on much less robust grounds. The large metallicity spread in the local subdwarf photometric sample, in particular, remains puzzling. Recent observations suggest that there is a continuous kinematic shear between the thick-disk population, present in local samples, and the genuine spheroid one. This enables us to derive only an upper limit for the spheroid mass density and IMF. Within all the uncertainties, the latter is found to be similar to the one derived for globular clusters and is well represented also by a lognormal form with a characteristic mass slightly larger than for the disk, M , ,e xcluding as ignif icant population of m!0.2-0.3 c brown dwarfs in globular clusters and in the spheroid. The IMF characteristic of early star formation at large redshift remains undetermined, but different observational constraints suggest that it does not extend below!1M , .T hese results suggest a characteristic mass for star formation that decreases with time, from conditions prevailing at large redshift to conditions characteristic of the spheroid (or thick disk) to present-day conditions.Theseconclusions,however, remain speculative, given the large uncertainties in the spheroid and early star IMF determinations. These IMFs allow a reasonably robust determination of the Galactic present-day and initial stellar and brown dwarf contents. They also have important galactic implications beyond the Milky Way in yielding more accurate mass-to-light ratio determinations. The mass-to-light ratios obtained with the disk and the spheroid IMF yield values 1.8-1.4 times smaller than for a Salpeter IMF, respectively, in agreement with various recent dynamical determinations. This general IMF determination is examined in the context of star formation theory. None of the theories based on a Jeans-type mechanism, where fragmentation is due only to gravity, can fulfill all the observational constraints on star formation and predict a large number of substellar objects. On the other hand, recent numerical simulations of compressible turbulence, in particular in super-Alfvenic conditions, seem to reproduce both qualitatively and quantitatively the stellar and substellar IMF and thus provide an appealing theoretical foundation. In this picture, star formation is induced by the dissipation of large-scale turbulence to smaller scales through radiative MHD shocks, producing filamentary structures. These shocks produce local nonequilibrium structures with large density contrasts, which collapse eventually in gravitationally bound objects under the combined influence of turbulence and gravity. The concept of a single Jeans mass is replaced by a distribution of local Jeans masses, representative of the lognormal probability density function of the turbulent gas. Objects below the mean thermal Jeans mass still have a possibility to collapse, although with a decreasing probability.

8,218 citations