scispace - formally typeset
Search or ask a question
Journal ArticleDOI

The Synthesis of Densely Grafted Copolymers by Atom Transfer Radical Polymerization

10 Dec 1998-Macromolecules (American Chemical Society)-Vol. 31, Iss: 26, pp 9413-9415
TL;DR: In this article, a macroinitiator with a grafting site at each repeat unit was used to obtain a broad molecular weight distribution of brush-like macromolecules using atom transfer radical polymerization (ATRP).
Abstract: Recent progress in the field of densely grafted, or “brush” (co)polymers has prompted a need to develop efficient methods to synthesize a wider variety of materials with the same basic architectural design. These brushlike macromolecules have been prepared previously using the macromonomer method.1-6 Macromonomers, usually prepared by anionic polymerization, were homopolymerized using conventional radical methods to maximize the number of branches possible from a linear backbone based on vinyl monomers. Upon fractionation of these materials using size exclusion chromatography, samples of narrow polydispersities were obtained which could then be cast on surfaces to form highly ordered thin films. To avoid the rigorous methods necessary for ionic polymerizations and sample fractionation, and to extend the variety of compositional content of these types of materials, atom transfer radical polymerization (ATRP) has been used to prepare similar macromolecular architectures. The approach described here involves grafting from a macroinitiator and can offer greater versatility in terms of both the length and the composition of the backbone and/or the side chains than previous methods which employed the synthesis of high molecular weight macromonomers and their subsequent polymerization by uncontrolled radical techniques; to obtain welldefined polymeric brushes required their fractionation, generally by SEC. To our knowledge, there are no known examples of using a macroinitaitor with a grafting site at each repeat unit to make well-defined polymeric brushes. Combinations of nitroxide-mediated, conventional free radical polymerization and ATRP to prepare graft copolymers from macroinitiators have been used previously.7,8 ATRP has also been combined with conventional radical polymerization to prepare amphiphilic graft copolymers9 and thermoplastic elastomers,10 as well. In each of these cases, however, the materials are loosely grafted, having been prepared from a macroinitiator which is a copolymer containing both initiation/ branch sites and spacing repeat units. Controlled radical polymerization and ATRP in particular afford access to materials of controlled molecular weight, predicted by the ratio of consumed monomer to initiation sites.11,12 This method also yields polymer segments of narrow molecular weight distributions13 in addition to being applicable to a host of vinyl monomers such as styrene, (meth)acrylates, acrylonitrile, etc.14 Thus, there are many possibilities which make its application to the area of brush (co)polymers appealing. Included here are preliminary synthetic data and AFM images which show that it is possible to prepare densely grafted copolymers using ATRP. Two approaches were used to prepare the macroinitiators, Scheme 1. The first involved conventional free radical homopolymerization of 2-(2-bromopropionyloxy)ethyl acrylate (BPEA)15 using AIBN in the presence of carbon tetrabromide to attenuate the molecular weight (Mn ) 27 300, Mw/Mn ) 2.3). By use of AIBN as an intiator to prepare the ATRP macroinitiator, a polymer with a broad molecular weight distribution was obtained. Such a macroinitiator would consequently result in the formation of brush polymers with broad molecular weight distributions, no matter how well controlled the polymerization of the side chains. Thus, the preparation of a well-defined macroinitiator was undertaken. In the second approach, trimethylsilylprotected 2-hydroxyethyl methacrylate (HEMA-TMS)16 was polymerized via ATRP and subsequently esterified with 2-bromoisobutyryl bromide (BriBuBr) in the presence of a catalytic amount of tetrabutylammonium fluoride (TBAF) to yield a different macroinitiator, poly(2-(2-bromoisobutyryloxy)ethyl methacrylate) (pBIEM)16 with controlled molecular weight and low polydispersity (Mn ) 55 500, Mw/Mn ) 1.3), Table 1. It should be noted that the macroinitiator prepared using ATRP was composed of a stiffer methacrylate structure and with a 2-bromoisobutyryl initiation site while the free radically prepared pBPEA contained an acrylate backbone and 2-bromopropionyl initiation sites. However, both types of initiating species have been shown to initiate styrene polymerization well.14 Both polymers were then used as macroinitiators for ATRP of styrene (S) and butyl acrylate (BA). Side chains with a degree of polymerization of about 40 from a macroinitiator of pBIEM with a Mn of approximately 50 000 (which contained about 200 initiation sites per Scheme 1 9413 Macromolecules 1998, 31, 9413-9415
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, a review of recent mechanistic developments in the field of controlled/living radical polymerization (CRP) is presented, with particular emphasis on structure-reactivity correlations and "rules" for catalyst selection in ATRP, for chain transfer agent selection in reversible addition-fragmentation chain transfer (RAFT) polymerization, and for the selection of an appropriate mediating agent in stable free radical polymerisation (SFRP), including organic and transition metal persistent radicals.

2,869 citations


Cites background from "The Synthesis of Densely Grafted Co..."

  • ...This includes incorporation of side functional groups directly to a polymer backbone [326] or in a protected form [393]....

    [...]

Journal ArticleDOI
TL;DR: The current status and future perspectives in atom transfer radical polymerization (ATRP) are presented in this paper, with a special emphasis on mechanistic understanding of ATRP, recent synthetic and process development, and new controlled polymer architectures enabled by ATRP.
Abstract: Current status and future perspectives in atom transfer radical polymerization (ATRP) are presented. Special emphasis is placed on mechanistic understanding of ATRP, recent synthetic and process development, and new controlled polymer architectures enabled by ATRP. New hybrid materials based on organic/inorganic systems and natural/synthetic polymers are presented. Some current and forthcoming applications are described.

2,188 citations

Journal ArticleDOI
TL;DR: Atom transfer radical polymerization (ATRP) is one of the most successful methods to polymerize styrenes, (meth)acrylates and a variety of other monomers in a controlled fashion, yielding polymers with molecular weights predetermined by the ratio of the concentrations of consumed monomer to introduced initiator and with low polydispersities as discussed by the authors.

1,189 citations

References
More filters
Journal ArticleDOI
TL;DR: An extension of ATRA to atom transfer radical addition, ATRP, provided a new and efficient way to conduct controlled/living radical polymerization as mentioned in this paper, using a simple alkyl halide, R-X (X = Cl and Br), as an initiator and a transition metal species complexed by suitable ligand(s), M t n /L x, e.g., CuX/2,2'-bipyridine, as a catalyst.
Abstract: An extension of atom transfer radical addition, ATRA, to atom transfer radical polymerization, ATRP, provided a new and efficient way to conduct controlled/living radical polymerization. By using a simple alkyl halide, R-X (X = Cl and Br), as an initiator and a transition metal species complexed by suitable ligand(s), M t n /L x , e.g., CuX/2,2'-bipyridine, as a catalyst, ATRP of vinyl monomers such as styrenes and (meth)acrylates proceeded in a living fashion, yielding polymers with degrees of polymerization predetermined by Δ[M]/[I] 0 up to M n ≃ 10 5 and low polydispersities, 1.1 < M w /M n < 1.5. The participation of free radical intermediates was supported by analysis of the end groups and the stereochemistry of the polymerization. The general principle and the mechanism of ATRP are elucidated. Various factors affecting the ATRP process are discussed.

1,628 citations

Journal ArticleDOI
TL;DR: The homogeneous atom transfer radical polymerization (ATRP) of styrene using solubilizing 4,4'dialkyl substituted 2,2'bipyridines yielded well-defined polymers with Mw/Mn ≤ 1.10 as mentioned in this paper.
Abstract: The homogeneous atom transfer radical polymerization (ATRP) of styrene using solubilizing 4,4‘-dialkyl substituted 2,2‘-bipyridines yielded well-defined polymers with Mw/Mn ≤ 1.10. The polymerizations exhibited an increase in molecular weight in direct proportion to the ratio of the monomer consumed to the initial initiator concentration and also exhibited internal first-order kinetics with respect to monomer concentration. The optimum ratio of ligand-to-copper(I) halide for these polymerizations was found to be 2:1, which tentatively indicates that the coordination sphere of the active copper(I) center contains two bipyridine ligands. The exclusive role for this copper(I) complex in ATRP is atom transfer, since at typical concentrations that occur for these polymerizations (≈10-7−10-8 M), polymeric radicals were found not to react with the copper(I) center in any manner that enhanced or detracted from the observed control. ATRP also exhibited first-order kinetics with respect to both initiator and copper...

852 citations

Journal ArticleDOI
10 May 1996-Science
TL;DR: A radical polymerization process that yields well-defined polymers normally obtained only through anionic polymerizations is reported, and has all of the characteristics of a living polymerization.
Abstract: A radical polymerization process that yields well-defined polymers normally obtained only through anionic polymerizations is reported. Atom transfer radical polymerizations of styrene were conducted with several solubilizing ligands for the copper(I) halides: 4,4′-di-tert-butyl, 4,4′-di-n-heptyl, and 4,4′-di-(5-nonyl)-2,2′-dipyridyl. The resulting polymerizations have all of the characteristics of a living polymerization and displayed linear semilogarithmic kinetic plots, a linear correlation between the number-average molecular weight and the monomer conversion, and low polydispersities (ratio of the weight-average to number-average molecular weights of 1.04 to 1.05). Similar results were obtained for the polymerization of acrylates.

837 citations

Journal ArticleDOI
08 Jan 1998-Nature
TL;DR: In this article, the authors report a general strategy for the rational control of polymer conformation through self-assembly of quasi-equivalent monodendritic (branched) side-groups attached to flexible backbones.
Abstract: The chain conformation of polymers plays an important role in controlling their phase behaviour and associated material properties In the case of flexible polymers, conformation is controlled by the degree of polymerization (DP), with low-DP polymers having extended polymer chains and high-DP polymers adopting random-coil conformations in solution and the bulk amorphous state1, and folded conformations in the crystalline phase2 Exceptions to this general rule are polymers that contain structurally rigid building blocks, or that are subjected to directional shear forces during solidification The backbones of semi-flexible and rigid rod-like polymers, for example, are always extended in liquid crystalline and crystalline phases3,4,5, and gel-spun flexible polymers form extended-chain crystals2 Here we report a general strategy for the rational control of polymer conformation through the self-assembly of quasi-equivalent monodendritic (branched) side-groups attached to flexible backbones At low DPs, the conical monodendrons assemble to produce a spherical polymer with random-coil backbone conformation On increasing the DP, the self-assembly pattern of the monodendritic units changes to give cylindrical polymers with extended backbones This correlation between polymer conformation and DP is opposite to that seen in most synthetic and natural macromolecules We anticipate that our strategy will provide new approaches for the rational design of organized supramolecular materials6,7,8,9 in areas such as nanotechnology, functional films and fibres, molecular devices, and membranes, expanding the synthetic and technological uses of dendritic building blocks7,10,11,12,13,14,15

746 citations