scispace - formally typeset
Search or ask a question
Book

The theory of ground-water motion

01 Jan 1940-
TL;DR: In this paper, it was shown that a more exceptionless analytical theory results if a potential whose value at a given point is defined to be equal to the work required to transform a unit mass of fluid from an arbitrary standard state to the state at the point in question is employed.
Abstract: The existing analytical treatments of ground-water flow have mostly been founded upon the erroneous conception, borrowed from the theory of the flow of the ideal frictionless fluids of classical hydrodynamics, that ground-water motion is derivable from a velocity potential. This conception is in conformity with the principle of the conservation of matter but not with that of the conservation of energy. In the present paper it is shown that a more exceptionless analytical theory results if a potential whose value at a given point is defined to be equal to the work required to transform a unit mass of fluid from an arbitrary standard state to the state at the point in question is employed. Denoting this function by $$\Phi$$, it is shown that the differential equation of fluid flow in an isotropic medium is given by $$q = - \sigma$$ grad $$\Phi$$, where q is the flow vector whose magnitude is equal to the volume of fluid crossing a unit of area normal to the flow direction in unit time, and $$\sigma$$ a spec...
Citations
More filters
Book
01 Jun 1989
TL;DR: The chemical composition of natural water is derived from many different sources of solutes, including gases and aerosols from the atmosphere, weathering and erosion of rocks and soil, solution or precipitation reactions occurring below the land surface, and cultural effects resulting from human activities.
Abstract: The chemical composition of natural water is derived from many different sources of solutes, including gases and aerosols from the atmosphere, weathering and erosion of rocks and soil, solution or precipitation reactions occurring below the land surface, and cultural effects resulting from human activities. Broad interrelationships among these processes and their effects can be discerned by application of principles of chemical thermodynamics. Some of the processes of solution or precipitation of minerals can be closely evaluated by means of principles of chemical equilibrium, including the law of mass action and the Nernst equation. Other processes are irreversible and require consideration of reaction mechanisms and rates. The chemical composition of the crustal rocks of the Earth and the composition of the ocean and the atmosphere are significant in evaluating sources of solutes in natural freshwater. The ways in which solutes are taken up or precipitated and the amounts present in solution are influenced by many environmental factors, especially climate, structure and position of rock strata, and biochemical effects associated with life cycles of plants and animals, both microscopic and macroscopic. Taken together and in application with the further influence of the general circulation of all water in the hydrologic cycle, the chemical principles and environmental factors form a basis for the developing science of natural-water chemistry. Fundamental data used in the determination of water quality are obtained by the chemical analysis of water samples in the laboratory or onsite sensing of chemical properties in the field. Sampling is complicated by changes in the composition of moving water and by the effects of particulate suspended material. Some constituents are unstable and require onsite determination or sample preservation. Most of the constituents determined are reported in gravimetric units, usually milligrams per liter or milliequivalents

6,271 citations

Journal ArticleDOI
TL;DR: In this article, the mechanisms of interactions between groundwater and surface water (GW-SW) as they affect recharge-discharge processes are comprehensively outlined, and the ecological significance and the human impacts of such interactions are emphasized.
Abstract: The interactions between groundwater and surface water are complex. To understand these interactions in relation to climate, landform, geology, and biotic factors, a sound hydrogeoecological framework is needed. All these aspects are synthesized and exemplified in this overview. In addition, the mechanisms of interactions between groundwater and surface water (GW–SW) as they affect recharge–discharge processes are comprehensively outlined, and the ecological significance and the human impacts of such interactions are emphasized. Surface-water and groundwater ecosystems are viewed as linked components of a hydrologic continuum leading to related sustainability issues. This overview concludes with a discussion of research needs and challenges facing this evolving field. The biogeochemical processes within the upper few centimeters of sediments beneath nearly all surface-water bodies (hyporheic zone) have a profound effect on the chemistry of the water interchange, and here is where most of the recent research has been focusing. However, to advance conceptual and other modeling of GW–SW systems, a broader perspective of such interactions across and between surface-water bodies is needed, including multidimensional analyses, interface hydraulic characterization and spatial variability, site-to-region regionalization approaches, as well as cross-disciplinary collaborations.

1,670 citations


Cites background from "The theory of ground-water motion"

  • ...As Hubbert (1940) shows, given an areally uniform precipitation and infiltration rate over an undulating surface, a groundwater flow system will develop driven by a water-table surface that is a subdued replica of the land surface....

    [...]

Book
01 Jan 1986
Abstract: Evaluating Fractured Reservoirs Reservoir Management Detecting And Predicting Fracture Occurrence and Intensity Analysis Of Anisotropic Reservoirs Analysis Procedures in Fractured Reservoirs Appendix A: List of Documented Fractured Reservoirs Appendix B: Procedures Checklist Appendix C: Averaging Techniques

1,186 citations

Journal ArticleDOI
TL;DR: In this article, the authors used the theory of flow through fractured rock and homogeneous anisotropic porous media to determine when a fractured rock behaves as a continuum, i.e., there is an insignificant change in the value of the equivalent permeability with a small addition or subtraction to the test volume and an equivalent tensor exists which predicts the correct flux when the direction of a constant gradient is changed.
Abstract: The theory of flow through fractured rock and homogeneous anisotropic porous media is used to determine when a fractured rock behaves as a continuum. A fractured rock can be said to behave like an equivalent porous medium when (1) there is an insignificant change in the value of the equivalent permeability with a small addition or subtraction to the test volume and (2) an equivalent permeability tensor exists which predicts the correct flux when the direction of a constant gradient is changed. Field studies of fracture geometry are reviewed and a realistic, two-dimensional fracture system model is developed. The shape, size, orientation, and location of fractures in an impermeable matrix are random variables in the model. These variables are randomly distributed according to field data currently available in the literature. The fracture system models are subjected to simulated flow tests. The results of the flow tests are plotted as permeability ‘ellipses.’ The size and shape of these permeability ellipses show that fractured rock does not always behave as a homogeneous, anisotropic porous medium with a symmetric permeability tensor. Fracture systems behave more like porous media when (1) fracture density is increased, (2) apertures are constant rather than distributed, (3) orientations are distributed rather than constant, and (4) larger sample sizes are tested. Preliminary results indicate the use of this new tool, when perfected, will greatly enhance our ability to analyze field data on fractured rock systems. The tool can be used to distinguish between fractured systems which can be treated as porous media and fractured systems which must be treated as a collection of discrete fracture flow paths.

909 citations

Journal ArticleDOI
TL;DR: Submarine groundwater discharge (SGD) as mentioned in this paper is defined as any flow of water on continental margins from the seabed to the coastal ocean, regardless of fluid composition or driving force.
Abstract: Both terrestrial and marine forces drive underground fluid flows in the coastal zone. Hydraulic gradients on land result in groundwater seepage near shore and may contribute to flows further out on the shelf from confined aquifers. Marine processes such as tidal pumping and current-induced pressure gradients may induce interfacial fluid flow anywhere on the shelf where permeable sediments are present. The terrestrial and oceanic forces overlap spatially so measured fluid advection through coastal sediments may be a result of composite forcing. We thus define “submarine groundwater discharge” (SGD) as any and all flow of water on continental margins from the seabed to the coastal ocean, regardless of fluid composition or driving force. SGD is typically characterized by low specific flow rates that make detection and quantification difficult. However, because such flows occur over very large areas, the total flux is significant. Discharging fluids, whether derived from land or composed of re-circulated seawater, will react with sediment components. These reactions may increase substantially the concentrations of nutrients, carbon, and metals in the fluids. These fluids are thus a source of biogeochemically important constituents to the coastal ocean. Terrestrially-derived fluids represent a pathway for new material fluxes to the coastal zone. This may result in diffuse pollution in areas where contaminated groundwaters occur. This paper presents an historical context of SGD studies, defines the process in a form that is consistent with our current understanding of the driving forces as well as our assessment techniques, and reviews the estimated global fluxes and biogeochemical implications. We conclude that to fully characterize marine geochemical budgets, one must give due consideration to SGD. New methodologies, technologies, and modeling approaches are required to discriminate among the various forces that drive SGD and to evaluate these fluxes more precisely.

856 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, a detailed technique for the measurement of the permeability of porous media, by the use of either liquids or gases, is described, and derived of the formulae by which the measurement may be computed from the laboratory measurements.
Abstract: A detailed technique is described for the measurement of the permeability of porous media, by the use of either liquids or gases. Derivations are given of the formulae by which the permeability may be computed from the laboratory measurements. In addition to defining a convenient permeability unit, it is proposed to call it the "darcy." Field measurements on the effective permeability of underground sands are discussed, and the appropriate formulae are derived. These include expressions for liquid flow, gas flow, gravity flow, and composite artesian and gravity flow in steady state. Correction curves are given for application where the wells do not completely penetrate the producing sands.

27 citations