scispace - formally typeset
Book

The theory of transformations in metals and alloys

01 Jan 1965-

TL;DR: In this paper, the authors present a general introduction to the theory of transformation kinetics of real metals, including the formation and evolution of martensitic transformations, as well as a theory of dislocations.

AbstractPart I General introduction. Formal geometry of crystal lattices. The theory of reaction rates. The thermodynamics of irreversable processes. The structure of real metals. Solids solutions. The theory of dislocations. Polycrystalline aggregates. Diffusion in the solid state. The classical theory of nucleation. Theory of thermally activated growth. Formal theory of transformation kinetics. Part II Growth from the vapour phase. Solidification and melting. Polymorphic Changes. Precipitation from supersaturated solid solution. Eutectoidal transformations. Order-disorder transformations. Recovery recrystalisation and grain growth. Deformation twinning. Characteristics of martensic transformations. Crystallography of martensitic transformations. Kinetics of martensitic transformations. Rapid solidification. Bainite steels. Shape memory alloys.

...read more


Citations
More filters
Journal ArticleDOI
Akihisa Inoue1
TL;DR: In this article, the authors investigated the stabilization properties of the supercooled liquid for a number of alloys in the Mg-, lanthanide-, Zr-, Ti-, Fe-, Co-, Pd-Cu- and Ni-based systems.
Abstract: Bulk metallic materials have ordinarily been produced by melting and solidification processes for the last several thousand years. However, metallic liquid is unstable at temperatures below the melting temperature and solidifies immediately into crystalline phases. Consequently, all bulk engineering alloys are composed of a crystalline structure. Recently, this common concept was exploded by the findings of the stabilization phenomenon of the supercooled liquid for a number of alloys in the Mg-, lanthanide-, Zr-, Ti-, Fe-, Co-, Pd-Cu- and Ni-based systems. The alloys with the stabilized supercooled liquid state have three features in their alloy components, i.e. multicomponent systems, significant atomic size ratios above 12%, and negative heats of mixing. The stabilization mechanism has also been investigated from experimental data of structure analyses and fundamental physical properties. The stabilization has enabled the pro- duction of bulk amorphous alloys in the thickness range of 1-100 mm by using various casting processes. Bulk amorphous Zr-based alloys exhibit high mechanical strength, high fracture toughness and good cor- rosion resistance and have been used for sporting goods materials. The stabilization also leads to the appearance of a large supercooled liquid region before crystallization and enables high-strain rate super- plasticity through Newtonian flow. The new Fe- and Co-based amorphous alloys exhibit a large super- cooled liquid region and good soft magnetic properties which are characterized by low coercive force and high permeability. Furthermore, homogeneous dispersion of nanoscale particles into Zr-based bulk amor- phous alloys was found to cause an improvement of tensile strength without detriment to good ductility. The discovery of the stabilization phenomenon, followed by the clarification of the stabilization criteria of the supercooled liquid, will promise the future definite development of bulk amorphous alloys as new basic science and engineering materials. # 2000 Acta Metallurgica Inc. Published by Elsevier Science Ltd. All rights reserved.

4,806 citations

Journal ArticleDOI
TL;DR: In this article, a selfconsistent and logical account of key issues on Ti-Ni-based alloys from physical metallurgy viewpoint on an up-to-date basis is presented.
Abstract: Ti–Ni-based alloys are quite attractive functional materials not only as practical shape memory alloys with high strength and ductility but also as those exhibiting unique physical properties such as pre-transformation behaviors, which are enriched by various martensitic transformations. The paper starts from phase diagram, structures of martensites, mechanisms of martensitic transformations, premartensitic behavior, mechanism of shape memory and superelastic effects etc., and covers most of the fundamental issues related with the alloys, which include not only martensitic transformations but also diffusional transformations, since the latter greatly affect the former, and are useful to improve shape memory characteristics. Thus the alloy system will serve as an excellent case study of physical metallurgy, as is the case for steels where all kinds of phase transformations are utilized to improve the physical properties. In short this review is intended to give a self-consistent and logical account of key issues on Ti–Ni based alloys from physical metallurgy viewpoint on an up-to-date basis.

2,963 citations

Journal ArticleDOI
TL;DR: In this article, the authors explore a theoretical approach to these fine phase mixtures based on the minimization of free energy and show that the α-phase breaks up into triangular domains called Dauphine twins which become finer and finer in the direction of increasing temperature.
Abstract: Solid-solid phase transformations often lead to certain characteristic microstructural features involving fine mixtures of the phases. In martensitic transformations one such feature is a plane interface which separates one homogeneous phase, austenite, from a very fine mixture of twins of the other phase, martensite. In quartz crystals held in a temperature gradient near the α-β transformation temperature, the α-phase breaks up into triangular domains called Dauphine twins which become finer and finer in the direction of increasing temperature. In this paper we explore a theoretical approach to these fine phase mixtures based on the minimization of free energy.

1,405 citations

Journal ArticleDOI
Lian Yu1
TL;DR: Current research in the stabilization of amorphous solids focuses on the stabilize of labile substances during processing and storage using additives, the prevention of crystallization of the excipients that must remainAmorphous for their intended functions, and the selection of appropriate storage conditions under which amorphously solids are stable.
Abstract: The importance of amorphous pharmaceutical solids lies in their useful properties, common occurrence, and physicochemical instability relative to corresponding crystals. Some pharmaceuticals and excipients have a tendency to exist as amorphous solids, while others require deliberate prevention of crystallization to enter and remain in the amorphous state. Amorphous solids can be produced by common pharmaceutical processes, including melt quenching, freeze- and spray-drying, milling, wet granulation, and drying of solvated crystals. The characterization of amorphous solids reveals their structures, thermodynamic properties, and changes (crystallization and structural relaxation) in single- and multi-component systems. Current research in the stabilization of amorphous solids focuses on: (i) the stabilization of labile substances (e.g., proteins and peptides) during processing and storage using additives, (ii) the prevention of crystallization of the excipients that must remain amorphous for their intended functions, and (iii) the selection of appropriate storage conditions under which amorphous solids are stable.

1,272 citations

Book
01 Jan 2001
TL;DR: The mechanism of the bainite transformation in steels is reviewed in this paper, with a summary of the early research and concluding with an assessment of the transformation in the context of the other reactions which occur as austenite is cooled to temperatures where it is no longer the stable phase.
Abstract: The mechanism of the bainite transformation in steels is reviewed, beginning with a summary of the early research and finishing with an assessment of the transformation in the context of the other reactions which occur as austenite is cooled to temperatures where it is no longer the stable phase. The review includes a detailed account of the microstructure, chemistry, and crystallography of bainitic ferrite and of the variety of carbide precipitation reactions associated with the bainite transformation. This is followed by an assessment of the thermodynamic and kinetic characteristics of the reaction and by a consideration of the reverse transformation from bainite to austenite. It is argued that there are useful mechanistic distinctions to be made between the coherent growth of ferrite initially supersaturated with carbon (bainite), coherent growth of Widmanstatten ferrite under paraequilibrium conditions, and incoherent growth of ferrite under local equilibrium or paraequilibrium conditions. The nature of the so-called acicular ferrite is also discussed.

1,101 citations