scispace - formally typeset
Search or ask a question
Journal ArticleDOI

The Transition from Quiescent to Activated States in Human Hematopoietic Stem Cells is Governed by Dynamic 3D Genome Reorganization

TL;DR: 3D chromatin interactions centrally mediated by CTCF endow a new gatekeeper function that governs the earliest fate transitions HSC make by coordinating disparate stemness pathways linked to quiescence and self-renewal.
Abstract: Life-long blood production requires long-term hematopoietic stem cells (LT-HSC) - marked by stemness states involving quiescence and self-renewal - to transition into activated short-term HSC (ST-HSC) with reduced stemness. As few transcriptional changes underlie this transition, we used single-cell and bulk ATAC-seq on human HSC and stem/progenitor subsets (HSPC) to uncover chromatin accessibility signatures, one including LT-HSC (LT/HSPC signature) and another excluding LT-HSC (Act/HSPC signature). These signatures inversely correlated during early hematopoietic commitment and differentiation. The Act/HSPC signature contains CTCF binding sites mediating 351 chromatin interactions, engaged in ST-HSC but not LT-HSC, enclosing multiple stemness pathway genes active in LT-HSC and repressed in ST-HSC. CTCF silencing derepressed stemness genes, restraining quiescent LT-HSC from transitioning to activated ST-HSC. Hence, 3D chromatin interactions centrally mediated by CTCF, endow a new gatekeeper function that governs the earliest fate transitions HSC make by coordinating disparate stemness pathways linked to quiescence and self-renewal.
Citations
More filters
Posted ContentDOI
17 Feb 2021-bioRxiv
TL;DR: In this paper, the authors used the transposable element (TE) subfamilies of leukemic hematopoietic stem cells (HSCs) to identify genetic determinants of their stemness properties.
Abstract: Despite most acute myeloid leukemia (AML) patients achieving complete remission after induction chemotherapy, two thirds of patients will relapse with fatal disease within 5 years. AML is organized as a cellular hierarchy sustained by leukemia stem cells (LSC) at the apex, with LSC properties directly linked to tumor progression, therapy failure and disease relapse 1–5. Despite the central role of LSC in poor patient outcomes, little is known of the genetic determinants of their stemness properties 6–8. Although much AML research focuses on mutational processes and their impact on gene expression programs, the genetic determinants of cell state properties including stemness expand beyond mutations, relying on the genetic architecture captured in the chromatin of each cell 9–11. As LSCs share many functional and molecular properties with normal hematopoietic stem cells (HSC), we identified genetic determinants of primitive populations enriched for LSCs and HSCs in comparison with their downstream mature progeny by investigating their chromatin accessibility. Our work reveals how distinct transposable element (TE) subfamilies are used in primitive versus mature populations, functioning as docking sites for stem cell-associated regulators of genome topology, including CTCF, or lineage-specific transcription regulators in primitive and mature populations, respectively. We further show how TE subfamilies accessible in LSCs define docking sites for several oncogenic drivers in AML, namely FLI1, LYL1 and MEIS1. Using chromatin accessibility profiles from a cohort of AML patients, we further show the clinical utility of our TE accessibility-based LSCTE121 scoring scheme to identify patients with high rates of relapse. Collectively, our work reveals how different accessible TE subfamilies serve as genetic determinants of stemness properties in normal and leukemic hematopoietic stem cells.

1 citations

Related Papers (5)