scispace - formally typeset
Search or ask a question
Journal ArticleDOI

The travel and environmental implications of shared autonomous vehicles, using agent-based model scenarios

TL;DR: In this article, the authors describe the design of an agent-based model for shared autonomous vehicle (SAV) operations, the results of many case-study applications using this model, and the estimated environmental benefits of such settings, versus conventional vehicle ownership and use.
Abstract: Carsharing programs that operate as short-term vehicle rentals (often for one-way trips before ending the rental) like Car2Go and ZipCar have quickly expanded, with the number of US users doubling every 1–2 years over the past decade. Such programs seek to shift personal transportation choices from an owned asset to a service used on demand. The advent of autonomous or fully self-driving vehicles will address many current carsharing barriers, including users’ travel to access available vehicles. This work describes the design of an agent-based model for shared autonomous vehicle (SAV) operations, the results of many case-study applications using this model, and the estimated environmental benefits of such settings, versus conventional vehicle ownership and use. The model operates by generating trips throughout a grid-based urban area, with each trip assigned an origin, destination and departure time, to mimic realistic travel profiles. A preliminary model run estimates the SAV fleet size required to reasonably service all trips, also using a variety of vehicle relocation strategies that seek to minimize future traveler wait times. Next, the model is run over one-hundred days, with driverless vehicles ferrying travelers from one destination to the next. During each 5-min interval, some unused SAVs relocate, attempting to shorten wait times for next-period travelers. Case studies vary trip generation rates, trip distribution patterns, network congestion levels, service area size, vehicle relocation strategies, and fleet size. Preliminary results indicate that each SAV can replace around eleven conventional vehicles, but adds up to 10% more travel distance than comparable non-SAV trips, resulting in overall beneficial emissions impacts, once fleet-efficiency changes and embodied versus in-use emissions are assessed.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the authors identify specific mechanisms through which automation may affect travel and energy demand and resulting GHG emissions and bring them together using a coherent energy decomposition framework, and explore the net effects of automation on emissions through several illustrative scenarios.
Abstract: Experts predict that new automobiles will be capable of driving themselves under limited conditions within 5–10 years, and under most conditions within 10–20 years. Automation may affect road vehicle energy consumption and greenhouse gas (GHG) emissions in a host of ways, positive and negative, by causing changes in travel demand, vehicle design, vehicle operating profiles, and choices of fuels. In this paper, we identify specific mechanisms through which automation may affect travel and energy demand and resulting GHG emissions and bring them together using a coherent energy decomposition framework. We review the literature for estimates of the energy impacts of each mechanism and, where the literature is lacking, develop our own estimates using engineering and economic analysis. We consider how widely applicable each mechanism is, and quantify the potential impact of each mechanism on a common basis: the percentage change it is expected to cause in total GHG emissions from light-duty or heavy-duty vehicles in the U.S. Our primary focus is travel related energy consumption and emissions, since potential lifecycle impacts are generally smaller in magnitude. We explore the net effects of automation on emissions through several illustrative scenarios, finding that automation might plausibly reduce road transport GHG emissions and energy use by nearly half – or nearly double them – depending on which effects come to dominate. We also find that many potential energy-reduction benefits may be realized through partial automation, while the major energy/emission downside risks appear more likely at full automation. We close by presenting some implications for policymakers and identifying priority areas for further research.

668 citations

Journal ArticleDOI
TL;DR: In this article, a stated preference questionnaire is distributed to 721 individuals living across Israel and North America, based on the characteristics of their current commutes, individuals are presented with various scenarios and asked to choose the car they would use for their commute.
Abstract: This study gains insight into individual motivations for choosing to own and use autonomous vehicles and develops a model for autonomous vehicle long-term choice decisions. A stated preference questionnaire is distributed to 721 individuals living across Israel and North America. Based on the characteristics of their current commutes, individuals are presented with various scenarios and asked to choose the car they would use for their commute. A vehicle choice model which includes three options is estimated: (1) Continue to commute using a regular car that you have in your possession. (2) Buy and shift to commuting using a privately-owned autonomous vehicle (PAV). (3) Shift to using a shared-autonomous vehicle (SAV), from a fleet of on-demand cars for your commute. A factor analysis determined five relevant latent variables describing the individuals’ attitudes: technology interest, environmental concern, enjoy driving, public transit attitude, and pro-AV sentiments. The effects that the characteristics of the individual and the autonomous vehicle have on use and acceptance are quantified through random utility models including logit kernel model taking into account panel effects. Currently, large overall hesitations towards autonomous vehicle adoption exist, with 44% of choice decisions remaining regular vehicles. Early AV adopters will likely be young, students, more educated, and spend more time in vehicles. Even if the SAV service were to be completely free, only 75% of individuals would currently be willing to use SAVs. The study also found various differences regarding the preferences of individuals in Israel and North America, namely that Israelis are overall more likely to shift to autonomous vehicles. Methods to encourage SAV use include increasing the costs for regular cars as well as educating the public about the benefits of shared autonomous vehicles.

609 citations

Journal ArticleDOI
TL;DR: The review shows that first-order impacts on road capacity, fuel efficiency, emissions, and accidents risk are expected to be beneficial and the balance between the short-term benefits and long-term impacts of vehicle automation remains an open question.

607 citations

Journal ArticleDOI
TL;DR: A recent internet-based survey of 347 Austinites found that respondents perceive fewer crashes to be the primary benefit of autonomous vehicles (AVs), with equipment failure being their top concern as mentioned in this paper, and their average willingness to pay (WTP) for adding full (Level 4) automation ($7253) appears to be much higher than that for adding partial (Level 3) automation (3300) to their current vehicles.
Abstract: Technological advances are bringing connected and autonomous vehicles (CAVs) to the ever-evolving transportation system. Anticipating public acceptance and adoption of these technologies is important. A recent internet-based survey polled 347 Austinites to understand their opinions on smart-car technologies and strategies. Results indicate that respondents perceive fewer crashes to be the primary benefit of autonomous vehicles (AVs), with equipment failure being their top concern. Their average willingness to pay (WTP) for adding full (Level 4) automation ($7253) appears to be much higher than that for adding partial (Level 3) automation ($3300) to their current vehicles. Ordered probit and other model specifications estimate the impact of demographics, built-environment variables, and travel characteristics on Austinites’ WTP for adding various automation technologies and connectivity to their current and coming vehicles. It also estimates adoption rates of shared autonomous vehicles (SAVs) under different pricing scenarios ($1, $2, and $3 per mile), choice dependence on friends’ and neighbors’ adoption rates, and home-location decisions after AVs and SAVs become a common mode of transport. Higher-income, technology-savvy males, who live in urban areas, and those who have experienced more crashes have a greater interest in and higher WTP for the new technologies, with less dependence on others’ adoption rates. Such behavioral models are useful to simulate long-term adoption of CAV technologies under different vehicle pricing and demographic scenarios. These results can be used to develop smarter transportation systems for more efficient and sustainable travel.

603 citations

Journal ArticleDOI
TL;DR: In this paper, a stated choice survey was conducted and analyzed, using a mixed logit model, showing that service attributes including travel cost, travel time and waiting time may be critical determinants of the use of SAVs and the acceptance of DRS.
Abstract: Shared autonomous vehicles (SAVs) could provide inexpensive mobility on-demand services. In addition, the autonomous vehicle technology could facilitate the implementation of dynamic ride-sharing (DRS). The widespread adoption of SAVs could provide benefits to society, but also entail risks. For the design of effective policies aiming to realize the advantages of SAVs, a better understanding of how SAVs may be adopted is necessary. This article intends to advance future research about the travel behavior impacts of SAVs, by identifying the characteristics of users who are likely to adopt SAV services and by eliciting willingness to pay measures for service attributes. For this purpose, a stated choice survey was conducted and analyzed, using a mixed logit model. The results show that service attributes including travel cost, travel time and waiting time may be critical determinants of the use of SAVs and the acceptance of DRS. Differences in willingness to pay for service attributes indicate that SAVs with DRS and SAVs without DRS are perceived as two distinct mobility options. The results imply that the adoption of SAVs may differ across cohorts, whereby young individuals and individuals with multimodal travel patterns may be more likely to adopt SAVs. The methodological limitations of the study are also acknowledged. Despite a potential hypothetical bias, the results capture the directionality and relative importance of the attributes of interest.

601 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, the authors proposed a nationally recognized licensing framework for AVs, determining appropriate standards for liability, security, and data privacy, which can be used to improve vehicle safety, congestion, and travel behavior.
Abstract: Autonomous vehicles (AVs) represent a potentially disruptive yet beneficial change to our transportation system. This new technology has the potential to impact vehicle safety, congestion, and travel behavior. All told, major social AV impacts in the form of crash savings, travel time reduction, fuel efficiency and parking benefits are estimated to approach $2000 to per year per AV, and may eventually approach nearly $4000 when comprehensive crash costs are accounted for. Yet barriers to implementation and mass-market penetration remain. Initial costs will likely be unaffordable. Licensing and testing standards in the U.S. are being developed at the state level, rather than nationally, which may lead to inconsistencies across states. Liability details remain undefined, security concerns linger, and without new privacy standards, a default lack of privacy for personal travel may become the norm. The impacts and interactions with other components of the transportation system, as well as implementation details, remain uncertain. To address these concerns, the federal government should expand research in these areas and create a nationally recognized licensing framework for AVs, determining appropriate standards for liability, security, and data privacy.

2,053 citations

01 Jan 2014
TL;DR: In this paper, the authors proposed a nationally recognized licensing framework for AVs, determining appropriate standards for liability, security, and data privacy for personal travel in the United States, which is based on the work of the authors of this paper.
Abstract: Autonomous vehicles (AVs) represent a potentially disruptive yet beneficial change to the transportation system This new technology has the potential to impact vehicle safety, congestion, and travel behavior All told, major social AV impacts in the form of crash savings, travel time reduction, fuel efficiency and parking benefits are estimated to approach $2,000 to per year per AV, and may eventually approach nearly $4,000 when comprehensive crash costs are accounted for Yet barriers to implementation and mass-market penetration remain Initial costs will likely be unaffordable Licensing and testing standards in the US are being developed at the state level, rather than nationally, which may lead to inconsistencies across states Liability details remain undefined, security concerns linger, and without new privacy standards, a default lack of privacy for personal travel may become the norm The impacts and interactions with other components of the transportation system, as well as implementation details, remain uncertain To address these concerns, the federal government should expand research in these areas and create a nationally recognized licensing framework for AVs, determining appropriate standards for liability, security, and data privacy

1,436 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a model of how drivers choose whether to cruise or to pay, and it predicts several results: drivers are more likely to cruise if curb parking is cheap, off-street parking is expensive, fuel is cheap and they want to park for a long time, and they place a low value on saving time.

878 citations

A Santos, N McGuckin, H Y Nakamoto, D Gray, S Liss 
01 Jun 2011
TL;DR: The 2009 National Household Travel Survey (NHTS) as mentioned in this paper provides data to characterize daily personal travel patterns across the country, including demographic data on households, vehicles, people, and detailed information on daily travel by all modes of transportation.
Abstract: The 2009 National Household Travel Survey (NHTS) provides data to characterize daily personal travel patterns across the country. The survey includes demographic data on households, vehicles, people, and detailed information on daily travel by all modes of transportation. NHTS survey data is collected from a sample of households and expanded to provide national estimates of trips and miles of travel by travel mode, trip purpose, and other household attributes. When combined with historical data from the 1969, 1977, 1983,1990, and 1995 NPTS and the 2001 NHTS, the 2009 NHTS serves as a rich source of detailed travel data over time for users. This document highlights travel trends and commuting patterns in eight key areas - summary of travel and demographics, household travel, person travel, private vehicle travel, vehicle availability and usage, commute travel patterns, temporal distribution, and special populations.

625 citations

Book
01 Jan 1997
TL;DR: This book presents a coherent approach to the analysis of transportation networks based on the concept of network equilibrium and the application of convex programming methods, and indicates promising areas for further research.
Abstract: Transportation Networks. Optimality. Cost Functions. Deterministic User Equilibrium Assignment. Stochastic User Equilibrium Assignment. Trip Table Estimation. Network Reliability. Network Design. Conclusions. References. Index.

584 citations