scispace - formally typeset
Open AccessJournal ArticleDOI

The weighted majority algorithm

Nick Littlestone, +1 more
- 01 Feb 1994 - 
- Vol. 108, Iss: 2, pp 212-261
Reads0
Chats0
TLDR
A simple and effective method, based on weighted voting, is introduced for constructing a compound algorithm, which is robust in the presence of errors in the data, and is called the Weighted Majority Algorithm.
Abstract
We study the construction of prediction algorithms in a situation in which a learner faces a sequence of trials, with a prediction to be made in each, and the goal of the learner is to make few mistakes. We are interested in the case where the learner has reason to believe that one of some pool of known algorithms will perform well, but the learner does not know which one. A simple and effective method, based on weighted voting, is introduced for constructing a compound algorithm in such a circumstance. We call this method the Weighted Majority Algorithm. We show that this algorithm is robust in the presence of errors in the data. We discuss various versions of the Weighted Majority Algorithm and prove mistake bounds for them that are closely related to the mistake bounds of the best algorithms of the pool. For example, given a sequence of trials, if there is an algorithm in the pool A that makes at most m mistakes then the Weighted Majority Algorithm will make at most c(log |A| + m) mistakes on that sequence, where c is fixed constant.

read more

Citations
More filters
Journal ArticleDOI

A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting

TL;DR: The model studied can be interpreted as a broad, abstract extension of the well-studied on-line prediction model to a general decision-theoretic setting, and it is shown that the multiplicative weight-update Littlestone?Warmuth rule can be adapted to this model, yielding bounds that are slightly weaker in some cases, but applicable to a considerably more general class of learning problems.
Journal ArticleDOI

Machine learning

TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Journal ArticleDOI

Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions

TL;DR: This paper presents an overview of the field of recommender systems and describes the current generation of recommendation methods that are usually classified into the following three main categories: content-based, collaborative, and hybrid recommendation approaches.
Journal ArticleDOI

Wrappers for feature subset selection

TL;DR: The wrapper method searches for an optimal feature subset tailored to a particular algorithm and a domain and compares the wrapper approach to induction without feature subset selection and to Relief, a filter approach tofeature subset selection.
Book

The Algorithmic Foundations of Differential Privacy

TL;DR: The preponderance of this monograph is devoted to fundamental techniques for achieving differential privacy, and application of these techniques in creative combinations, using the query-release problem as an ongoing example.
References
More filters
Journal ArticleDOI

Machine learning

TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Book ChapterDOI

On the Uniform Convergence of Relative Frequencies of Events to Their Probabilities

TL;DR: This chapter reproduces the English translation by B. Seckler of the paper by Vapnik and Chervonenkis in which they gave proofs for the innovative results they had obtained in a draft form in July 1966 and announced in 1968 in their note in Soviet Mathematics Doklady.
Journal ArticleDOI

Learnability and the Vapnik-Chervonenkis dimension

TL;DR: This paper shows that the essential condition for distribution-free learnability is finiteness of the Vapnik-Chervonenkis dimension, a simple combinatorial parameter of the class of concepts to be learned.
Journal ArticleDOI

Learning Quickly When Irrelevant Attributes Abound: A New Linear-Threshold Algorithm

TL;DR: This work presents one such algorithm that learns disjunctive Boolean functions, along with variants for learning other classes of Boolean functions.
Proceedings ArticleDOI

Aggregating strategies

Related Papers (5)