scispace - formally typeset
Search or ask a question
Book

The x-ray identification and crystal structures of clay minerals

01 Jan 1961-
About: The article was published on 1961-01-01 and is currently open access. It has received 966 citations till now. The article focuses on the topics: Clay minerals.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the influence of geological structures, textural features and mineralogy on the breakdown of coal measure rocks are considered, particular attention being paid to the more common rocks that are intimately associated with coal seams.

96 citations

Journal ArticleDOI
TL;DR: In this article, it was shown that the major defect in natural kaolinites is not the ___b/3 translation, but the displacement from one layer to another (or from one domain to another in the same layer) of the A1 vacancies.
Abstract: Until now, the different attempts to describe the defects of kaolinites were based on the ideas that (i) the hkl reflections with k = 3n are Bragg reflections, while (ii) the hkl reflections with k ~ 3n are affected by +h/3 translations orrotations. With regard to this conception, this work provides several important precisions: (i) The h, 3n, ( reflections are true continuous diffraction bands, more or less modulated, and disturbed by the existence, in the stacking, of random shifts parallel to the layer plane. (ii) The major defect in natural kaolinites is not the ___b/3 translation, but the displacement from one layer to the other (or from one domain to another in the same layer) of the A1 vacancies. (iii) The model containing true rotation of layers should be rejected because it does not allow us to interpret all the different parts of the experimental diagrams. Such a concept of defects in kaolinites is in agreement with the existence of polytypes of kaolinite, with the presence of twins, and allows us to interpret some physico-chemical properties such as the infrared spectra.

96 citations

Journal ArticleDOI
TL;DR: Palygorskite and associated clay minerals have been studied in a Pleistocene calcrete complex from the Negev desert (Sde Boqer, Israel). This complex is divided into five main parts: the chalky and marly bedrock overlain by its weathered product, a brecciated calcrete hardpan; the laminar crust; loess pockets trapped in the calcrete; and the overlying soft surficial soil.
Abstract: Palygorskite and associated clay minerals have been studied in a Pleistocene calcrete complex from the Negev desert (Sde Boqer, Israel). This complex is divided into five main parts: the chalky and marly bedrock overlain by its weathered product, a brecciated calcrete hardpan; the laminar crust; loess pockets trapped in the calcrete; and the overlying soft surficial soil. The distribution of clay minerals is directly dependent on the position of the sample in the calcrete complex. Smectite is inherited from the bedrock in the calcrete with an aeolian enrichment in loess pockets and upper soft soil. The source of kaolinite is mainly detrital, related to desert dust. Illite is partly inherited and partly neoformed in loess pockets and desert surficial soil. The origin of palygorskite is clearly related to precipitation processes from soil solutions, Si and Al ions being provided by the slope and detrital grains trapped in the calcrete, with Mg being provided by the parent rock, the slope and aeolian detrital dolomite. This neoformation occurs mainly around detrital grains such as quartz in the hardpan and along textural transitions in loess pockets and is associated with gypsum in the lower part of the toposequence where the evaporation fluxes are the most important. The existence as coatings around grains and the delicate structure of the fibres are incompatible with a detrital origin. Moreover, no evidence was found to support any transformation of smectite into palygorskite in the solid state. Palygorskite is the last step of the cycle of mobile silica and seems to be a product of late diagenesis in Sde Boqer calcrete.

93 citations

Journal ArticleDOI
TL;DR: Evidence is presented indicating that E. coli is protected from phage attack at low electrolyte concentrations by an envelope of sorbed colloidal materials around the cell, whereas at high electrolytes protection results both from the colloid envelope around the cells as well as from the sorption of cells and phages to solid particles.
Abstract: The effects of sorption phenomena on the interaction between a parasite and its host bacterium have been investigated using anEscherichia coli-bacteriophage-saline sediment system. The sediment contained organic matter and a high proportion of clay, predominantly montmorillonoid. BothE. coli and phage remained firmly sorbed to saline sediments or montmorillonite, but were rapidly desorbed following dilution of the electrolyte below a critical concentration. This desorption coincided with the dispersal of sediment colloids.Escherichia coli was protected from phage attack by the presence of sediment, montmorillonite, or organic matter at salinty levels both above and below this critical point for dispersal and desorption. Evidence is presented indicating thatE. coli is protected from phage attack at low electrolyte concentrations by an envelope of sorbed colloidal materials around the cell, whereas at high electrolyte concentrations protection results both from the colloid envelope around the cells as well as from the sorption of cells and phages to solid particles. The protection ofE. coli and possibly other fecal bacteria may result in their accumulation in saline sediments, producing a possible health hazard in estuaries and lagoons if the bacteria are desorbed following dilution as a result of heavy rainfall.

93 citations

Journal ArticleDOI
TL;DR: In this paper, a Maya Blue-alike composite was obtained by properly mixing and heating (190°C) pure sepiolite with 2.5% synthetic indigo, which showed that organic splinters related to fragmentation of the adsorbed indigo molecules leave the hosting matrix in the 300-500°C temperature interval.

92 citations