scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Theories of immiscible and structured mixtures

TL;DR: A survey of theories of immiscible mixtures can be found in this article, where it is emphasized that the immiscibility of such mixtures has important consequences concerning the forms of the constitutive equations, and that it can also result in the mixtures exhibiting microstructural effects.
About: This article is published in International Journal of Engineering Science.The article was published on 1983-01-01. It has received 566 citations till now.
Citations
More filters
ReportDOI
01 Dec 1993
TL;DR: This report describes the MFIX (Multiphase Flow with Interphase exchanges) computer model, a general-purpose hydrodynamic model that describes chemical reactions and heat transfer in dense or dilute fluid-solids flows, flows typically occurring in energy conversion and chemical processing reactors.
Abstract: This report describes the MFIX (Multiphase Flow with Interphase exchanges) computer model. MFIX is a general-purpose hydrodynamic model that describes chemical reactions and heat transfer in dense or dilute fluid-solids flows, flows typically occurring in energy conversion and chemical processing reactors. MFIX calculations give detailed information on pressure, temperature, composition, and velocity distributions in the reactors. With such information, the engineer can visualize the conditions in the reactor, conduct parametric studies and what-if experiments, and, thereby, assist in the design process. The MFIX model, developed at the Morgantown Energy Technology Center (METC), has the following capabilities: mass and momentum balance equations for gas and multiple solids phases; a gas phase and two solids phase energy equations; an arbitrary number of species balance equations for each of the phases; granular stress equations based on kinetic theory and frictional flow theory; a user-defined chemistry subroutine; three-dimensional Cartesian or cylindrical coordinate systems; nonuniform mesh size; impermeable and semi-permeable internal surfaces; user-friendly input data file; multiple, single-precision, binary, direct-access, output files that minimize disk storage and accelerate data retrieval; and extensive error reporting. This report, which is Volume 1 of the code documentation, describes the hydrodynamic theory used in the model: the conservation equations,more » constitutive relations, and the initial and boundary conditions. The literature on the hydrodynamic theory is briefly surveyed, and the bases for the different parts of the model are highlighted.« less

930 citations

Journal ArticleDOI
TL;DR: In this article, a physically motivated regularization of the Euler equations is proposed to allow topological transitions to occur smoothly, where the sharp interface is replaced by a narrow transition layer across which the fluids may mix.
Abstract: One of the fundamental problems in simulating the motion of sharp interfaces between immiscible fluids is a description of the transition that occurs when the interfaces merge and reconnect. It is well known that classical methods involving sharp interfaces fail to describe this type of phenomena. Following some previous work in this area, we suggest a physically motivated regularization of the Euler equations which allows topological transitions to occur smoothly. In this model, the sharp interface is replaced by a narrow transition layer across which the fluids may mix. The model describes a flow of a binary mixture, and the internal structure of the interface is determined by both diffusion and motion. An advantage of our regularization is that it automatically yields a continuous description of surface tension, which can play an important role in topological transitions. An additional scalar field is introduced to describe the concentration of one of the fluid components and the resulting system of equations couples the Euler (or Navier–Stokes) and the Cahn–Hilliard equations. The model takes into account weak non–locality (dispersion) associated with an internal length scale and localized dissipation due to mixing. The non–locality introduces a dimensional surface energy; dissipation is added to handle the loss of regularity of solutions to the sharp interface equations and to provide a mechanism for topological changes. In particular, we study a non–trivial limit when both components are incompressible, the pressure is kinematic but the velocity field is non–solenoidal (quasi–incompressibility). To demonstrate the effects of quasi–incompressibility, we analyse the linear stage of spinodal decomposition in one dimension. We show that when the densities of the fluids are not perfectly matched, the evolution of the concentration field causes fluid motion even if the fluids are inviscid. In the limit of infinitely thin and well–separated interfacial layers, an appropriately scaled quasi–incompressible Euler–Cahn–Hilliard system converges to the classical sharp interface model. In order to investigate the behaviour of the model outside the range of parameters where the sharp interface approximation is sufficient, we consider a simple example of a change of topology and show that the model permits the transition to occur without an associated singularity.

878 citations


Cites background or methods from "Theories of immiscible and structur..."

  • ...2 (1 c). We remark that the above model of the mixing layer is dierent from the more traditional models of homogeneous mixtures (see Atkin & Crane (1976) and Bedford & Drumheller (1983) for comprehensive reviews)....

    [...]

  • ...We remark that the above model of the mixing layer is different from the more traditional models of homogeneous mixtures (see Atkin & Crane (1976) and Bedford & Drumheller (1983) for comprehensive reviews)....

    [...]

Journal ArticleDOI
TL;DR: In this paper, a macroscopic thermodynamic theory was developed to describe two-phase flow in porous media, where the authors developed a constitutive theory resulting in balance equations and thermodynamics appropriate for modelling multiphase flow.

587 citations

Journal ArticleDOI
TL;DR: A depth-averaged ‘thin layer’ model of geophysical mass flows containing a mixture of solid material and fluid is described, derived from a ‘ two-phase’ or ‘two-fluid’ system of equations commonly used in engineering research.
Abstract: Geophysical mass flows—debris flows, avalanches, landslides—can contain O (10 6 –10 10 )m 3 or more of material, often a mixture of soil and rocks with a significant quantity of interstitial fluid. These flows can be tens of meters in depth and hundreds of meters in length. The range of scales and the rheology of this mixture presents significant modelling and computational challenges. This paper describes a depth-averaged ‘thin layer’ model of geophysical mass flows containing a mixture of solid material and fluid. The model is derived from a ‘two-phase’ or ‘two-fluid’ system of equations commonly used in engineering research. Phenomenological modelling and depth averaging combine to yield a tractable set of equations, a hyperbolic system that describes the motion of the two constituent phases. If the fluid inertia is small, a reduced model system that is easier to solve may be derived.

397 citations


Cites methods from "Theories of immiscible and structur..."

  • ...Starting with equations of mixture theory (Bedford & Drumheller 1983) and through a careful examination of experiments, these papers developed a system of mass and momentum balance laws for the mixture....

    [...]

Journal ArticleDOI
TL;DR: In this article, it is shown that the homogenization process using double scale asymptotic developments appears to be the appropriate method giving the right answer to the question, which is emphasized in two simple examples.

323 citations

References
More filters
Book
01 Jan 1873
TL;DR: The most influential nineteenth-century scientist for twentieth-century physics, James Clerk Maxwell (1831-1879) demonstrated that electricity, magnetism and light are all manifestations of the same phenomenon: the electromagnetic field as discussed by the authors.
Abstract: Arguably the most influential nineteenth-century scientist for twentieth-century physics, James Clerk Maxwell (1831–1879) demonstrated that electricity, magnetism and light are all manifestations of the same phenomenon: the electromagnetic field. A fellow of Trinity College Cambridge, Maxwell became, in 1871, the first Cavendish Professor of Physics at Cambridge. His famous equations - a set of four partial differential equations that relate the electric and magnetic fields to their sources, charge density and current density - first appeared in fully developed form in his 1873 Treatise on Electricity and Magnetism. This two-volume textbook brought together all the experimental and theoretical advances in the field of electricity and magnetism known at the time, and provided a methodical and graduated introduction to electromagnetic theory. Volume 2 covers magnetism and electromagnetism, including the electromagnetic theory of light, the theory of magnetic action on light, and the electric theory of magnetism.

9,565 citations

Journal ArticleDOI
TL;DR: In this article, the number of physical constants necessary to determine the properties of the soil is derived along with the general equations for the prediction of settlements and stresses in three-dimensional problems.
Abstract: The settlement of soils under load is caused by a phenomenon called consolidation, whose mechanism is known to be in many cases identical with the process of squeezing water out of an elasticporous medium. The mathematical physical consequences of this viewpoint are established in the present paper. The number of physical constants necessary to determine the properties of the soil is derived along with the general equations for the prediction of settlements and stresses in three‐dimensional problems. Simple applications are treated as examples. The operational calculus is shown to be a powerful method of solution of consolidation problems.

8,253 citations

Journal ArticleDOI
TL;DR: In this article, a theory for the propagation of stress waves in a porous elastic solid containing compressible viscous fluid is developed for the lower frequency range where the assumption of Poiseuille flow is valid.
Abstract: A theory is developed for the propagation of stress waves in a porous elastic solid containing compressible viscous fluid. The emphasis of the present treatment is on materials where fluid and solid are of comparable densities as for instance in the case of water‐saturated rock. The paper denoted here as Part I is restricted to the lower frequency range where the assumption of Poiseuille flow is valid. The extension to the higher frequencies will be treated in Part II. It is found that the material may be described by four nondimensional parameters and a characteristic frequency. There are two dilatational waves and one rotational wave. The physical interpretation of the result is clarified by treating first the case where the fluid is frictionless. The case of a material containing viscous fluid is then developed and discussed numerically. Phase velocity dispersion curves and attenuation coefficients for the three types of waves are plotted as a function of the frequency for various combinations of the characteristic parameters.

7,172 citations

Book
01 Aug 1969

3,841 citations

Journal ArticleDOI
TL;DR: In this paper, the theory of propagation of stress waves in a porous elastic solid developed in Part I for the low-frequency range is extended to higher frequencies, and the breakdown of Poiseuille flow beyond the critical frequency is discussed for pores of flat and circular shapes.
Abstract: The theory of propagation of stress waves in a porous elastic solid developed in Part I for the low‐frequency range is extended to higher frequencies. The breakdown of Poiseuille flow beyond the critical frequency is discussed for pores of flat and circular shapes. As in Part I the emphasis of the treatment is on cases where fluid and solids are of comparable densities. Dispersion curves for phase and group velocities along with attenuation factors are plotted versus frequency for the rotational and the two dilational waves and for six numerical combinations of the characteristic parameters of the porous systems. Asymptotic behavior at high frequency is also discussed.

3,600 citations