scispace - formally typeset
Search or ask a question
Book

Theory of elasticity

TL;DR: The theory of the slipline field is used in this article to solve the problem of stable and non-stressed problems in plane strains in a plane-strain scenario.
Abstract: Chapter 1: Stresses and Strains Chapter 2: Foundations of Plasticity Chapter 3: Elasto-Plastic Bending and Torsion Chapter 4: Plastic Analysis of Beams and Frames Chapter 5: Further Solutions of Elasto-Plastic Problems Chapter 6: Theory of the Slipline Field Chapter 7: Steady Problems in Plane Strain Chapter 8: Non-Steady Problems in Plane Strain
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations, are discussed.
Abstract: This article reviews the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations. The Dirac electrons can be controlled by application of external electric and magnetic fields, or by altering sample geometry and/or topology. The Dirac electrons behave in unusual ways in tunneling, confinement, and the integer quantum Hall effect. The electronic properties of graphene stacks are discussed and vary with stacking order and number of layers. Edge (surface) states in graphene depend on the edge termination (zigzag or armchair) and affect the physical properties of nanoribbons. Different types of disorder modify the Dirac equation leading to unusual spectroscopic and transport properties. The effects of electron-electron and electron-phonon interactions in single layer and multilayer graphene are also presented.

20,824 citations

Journal ArticleDOI
TL;DR: In this paper, a new Lagrangian formulation is introduced to make molecular dynamics (MD) calculations on systems under the most general externally applied, conditions of stress, which is well suited to the study of structural transformations in solids under external stress and at finite temperature.
Abstract: A new Lagrangian formulation is introduced. It can be used to make molecular dynamics (MD) calculations on systems under the most general, externally applied, conditions of stress. In this formulation the MD cell shape and size can change according to dynamical equations given by this Lagrangian. This new MD technique is well suited to the study of structural transformations in solids under external stress and at finite temperature. As an example of the use of this technique we show how a single crystal of Ni behaves under uniform uniaxial compressive and tensile loads. This work confirms some of the results of static (i.e., zero temperature) calculations reported in the literature. We also show that some results regarding the stress‐strain relation obtained by static calculations are invalid at finite temperature. We find that, under compressive loading, our model of Ni shows a bifurcation in its stress‐strain relation; this bifurcation provides a link in configuration space between cubic and hexagonal close packing. It is suggested that such a transformation could perhaps be observed experimentally under extreme conditions of shock.

13,937 citations

Journal ArticleDOI
TL;DR: In this paper, it is shown that to answer several questions of physical or engineering interest, it is necessary to know only the relatively simple elastic field inside the ellipsoid.
Abstract: It is supposed that a region within an isotropic elastic solid undergoes a spontaneous change of form which, if the surrounding material were absent, would be some prescribed homogeneous deformation. Because of the presence of the surrounding material stresses will be present both inside and outside the region. The resulting elastic field may be found very simply with the help of a sequence of imaginary cutting, straining and welding operations. In particular, if the region is an ellipsoid the strain inside it is uniform and may be expressed in terms of tabu­lated elliptic integrals. In this case a further problem may be solved. An ellipsoidal region in an infinite medium has elastic constants different from those of the rest of the material; how does the presence of this inhomogeneity disturb an applied stress-field uniform at large distances? It is shown that to answer several questions of physical or engineering interest it is necessary to know only the relatively simple elastic field inside the ellipsoid.

11,784 citations

Journal ArticleDOI
TL;DR: In this article, a relation between extent of plastic yielding and external load applied was investigated, and panels containing internal and edge slits were loaded in tension and lengths of plastic zones were measured.
Abstract: Y ielding at the end of a slit in a sheet is investigated, and a relation is obtained between extent of plastic yielding and external load applied. To verify this relation, panels containing internal and edge slits were loaded in tension and lengths of plastic zones were measured.

6,830 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed a new theory of elastic contact, which is more closely related to real surfaces than earlier theories, and showed how the contact deformation depends on the topography of the surface, and established the criterion for distinguishing surfaces which touch elastically from those which touch plastically.
Abstract: It is usually assumed that the real area of contact between two nominally flat metal surfaces is determined by the plastic deformation of their highest asperities. This leads at once to the result that the real area of contact is directlyproportional to the load and independent of the apparent area-a result with many applications in the theories of electric contacts and friction. Archard pointed out that plastic deformation could not be the universal rule, and introduced a model which showed that, contrary to earlier ideas, the area of contact could be proportional to the load even with purely elastic contact. This paper describes a new theory of elastic contact, which is more closely related to real surfaces than earlier theories. We show how the contact deformation depends on the topography of the surface, and establish the criterion for distinguishing surfaces which touch elastically from those which touch plastically. The theory also indicates the existence of an 'elastic contact hardness', a composite quantity depending on the elastic properties and the topography, which plays the same role in elastic contact as the conventional hardness does in plastic contact. A new instrument for measuring surface topography has been built; with it the various parameters shown by the theory to govern surface contact can be measured experimentally. The typical radii of surface asperities have been measured. They were found, surprisingly, to be orders of magnitude larger than the heights of the asperities. More generally we have been able to study the distributions of asperity heights and of other surface features for a variety of surfaces prepared by standard techniques. Using these data we find that contact between surfaces is frequently plastic, as usually assumed, but that surfaces which touch elastically are by no means uncommon in engineering practice.

5,371 citations