scispace - formally typeset
Search or ask a question
Journal Article

Theory of the linear and nonlinear optical properties of semiconductor microcrystallites

01 Jan 2005-SPIE milestone series (Society of Photo-Optical Instrumentation Engineers)-Vol. 180, pp 81-93
TL;DR: In the limit of a QD much smaller than the bulk exciton size, the linear spectrum will be a series of lines, and the phonon broadening of these lines is considered.
Abstract: We analyze theoretically the optical properties of ideal semiconductor crystallites so small that they show quantum confinement in all three dimensions [quantum dots (QD's)]. In the limit of a QD much smaller than the bulk exciton size, the linear spectrum will be a series of lines, and we consider the phonon broadening of these lines. The lowest interband transition will saturate like a two-level system, without exchange and Coulomb screening. Depending on the broadening, the absorption and the changes in absorption and refractive index resulting from saturation can become very large, and the local-field effects can become so strong as to give optical bistability without external feedback. The small QD limit is more readily achieved with narrow-band-gap semiconductors.
Citations
More filters
Journal ArticleDOI
16 Feb 1996-Science
TL;DR: In this article, the authors focus on the properties of quantum dots and their ability to join the dots into complex assemblies creates many opportunities for scientific discovery, such as the ability of joining the dots to complex assemblies.
Abstract: Current research into semiconductor clusters is focused on the properties of quantum dots-fragments of semiconductor consisting of hundreds to many thousands of atoms-with the bulk bonding geometry and with surface states eliminated by enclosure in a material that has a larger band gap. Quantum dots exhibit strongly size-dependent optical and electrical properties. The ability to join the dots into complex assemblies creates many opportunities for scientific discovery.

10,737 citations

Journal ArticleDOI
TL;DR: In this paper, a review is concerned with quantum confinement effects in low-dimensional semiconductor systems, focusing on the optical properties, including luminescence, of nanometre-sized microcrystals.
Abstract: This review is concerned with quantum confinement effects in low-dimensional semiconductor systems. The emphasis is on the optical properties, including luminescence, of nanometre-sized microcrysta...

1,030 citations

Journal ArticleDOI
Louis E. Brus1
TL;DR: In this paper, a review and analysis of the optical properties of quantum crystallites, with principal emphasis on the electro-optic Stark effect and all optical third order nonlinearity is presented.
Abstract: This is a review and analysis of the optical properties of quantum crystallites, with principal emphasis on the electro-optic Stark effect and all optical third order nonlinearity. There are also introductory discussions on physical size regimes, crystallite synthesis, quantum confinement theory, and linear optical properties. The experiments describe CdSe crystallites, exhibiting strong confinement of electrons and holes, and CuCl crystallites, exhibiting weak confinement of the exciton center of mass. In the CdSe system, neither the Stark effect nor the third order nonlinearity is well understood. The Stark shifts appear to be smaller than calculated, and field inducted broadening also occurs. The third order nonlinearity is only modestly stronger than in bulk material, despite theoretical prediction. Unexpectedly large homogeneous widths, due to surface carrier trapping, in the nominally discrete crystallite excited states appear to be involved. The CuCl system shows far narrower spectroscopic homogeneous widths, and corresponds more closely to an ideal quantum dot in the weak confinement limit. CuCl also exhibits exciton superradiance at low temperature. Surface chemistry and crystallite encapsulation are critical in achieving the predicted large Stark and third order optical effects in II-VI and III-V crystallites.

995 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of the electron-hole Coulomb interaction on the optical spectra of nanocrystals was analyzed and a theory of the quantum size levels in wide gap (CdSe) and narrow gap semiconductors (InAs) was presented.
Abstract: ▪ Abstract We review the rapid progress made in our understanding of the crystal properties of semiconductors and nanocrystals focussing on theoretical results obtained within the multiband effective mass approximation. A comparison with experiment shows these results are valid for nanocrystals down 22–26 A in diameter. The effect of the electron-hole Coulomb interaction on the optical spectra is analyzed. A theory of the quantum–size levels in wide gap (CdSe) and narrow gap semiconductors (InAs) is presented that describes the absorption spectra of these semiconductors well. A great enhancement of the electron-hole exchange interaction leads to the formation of the optically forbidden Dark Exciton in nanocrystals, which strongly affects their photoluminescence. A theory of the band-edge exciton fine structure is presented and applied to the study of the PL in CdSe nanocrystals. The effect of doping on nanocrystal spectra is considered. The enhancement of the short–range spin-spin interaction in Mn-doped ...

836 citations

References
More filters
Journal ArticleDOI
16 Feb 1996-Science
TL;DR: In this article, the authors focus on the properties of quantum dots and their ability to join the dots into complex assemblies creates many opportunities for scientific discovery, such as the ability of joining the dots to complex assemblies.
Abstract: Current research into semiconductor clusters is focused on the properties of quantum dots-fragments of semiconductor consisting of hundreds to many thousands of atoms-with the bulk bonding geometry and with surface states eliminated by enclosure in a material that has a larger band gap. Quantum dots exhibit strongly size-dependent optical and electrical properties. The ability to join the dots into complex assemblies creates many opportunities for scientific discovery.

10,737 citations

Journal ArticleDOI
TL;DR: In this paper, a review is concerned with quantum confinement effects in low-dimensional semiconductor systems, focusing on the optical properties, including luminescence, of nanometre-sized microcrystals.
Abstract: This review is concerned with quantum confinement effects in low-dimensional semiconductor systems. The emphasis is on the optical properties, including luminescence, of nanometre-sized microcrysta...

1,030 citations

Journal ArticleDOI
Louis E. Brus1
TL;DR: In this paper, a review and analysis of the optical properties of quantum crystallites, with principal emphasis on the electro-optic Stark effect and all optical third order nonlinearity is presented.
Abstract: This is a review and analysis of the optical properties of quantum crystallites, with principal emphasis on the electro-optic Stark effect and all optical third order nonlinearity. There are also introductory discussions on physical size regimes, crystallite synthesis, quantum confinement theory, and linear optical properties. The experiments describe CdSe crystallites, exhibiting strong confinement of electrons and holes, and CuCl crystallites, exhibiting weak confinement of the exciton center of mass. In the CdSe system, neither the Stark effect nor the third order nonlinearity is well understood. The Stark shifts appear to be smaller than calculated, and field inducted broadening also occurs. The third order nonlinearity is only modestly stronger than in bulk material, despite theoretical prediction. Unexpectedly large homogeneous widths, due to surface carrier trapping, in the nominally discrete crystallite excited states appear to be involved. The CuCl system shows far narrower spectroscopic homogeneous widths, and corresponds more closely to an ideal quantum dot in the weak confinement limit. CuCl also exhibits exciton superradiance at low temperature. Surface chemistry and crystallite encapsulation are critical in achieving the predicted large Stark and third order optical effects in II-VI and III-V crystallites.

995 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of the electron-hole Coulomb interaction on the optical spectra of nanocrystals was analyzed and a theory of the quantum size levels in wide gap (CdSe) and narrow gap semiconductors (InAs) was presented.
Abstract: ▪ Abstract We review the rapid progress made in our understanding of the crystal properties of semiconductors and nanocrystals focussing on theoretical results obtained within the multiband effective mass approximation. A comparison with experiment shows these results are valid for nanocrystals down 22–26 A in diameter. The effect of the electron-hole Coulomb interaction on the optical spectra is analyzed. A theory of the quantum–size levels in wide gap (CdSe) and narrow gap semiconductors (InAs) is presented that describes the absorption spectra of these semiconductors well. A great enhancement of the electron-hole exchange interaction leads to the formation of the optically forbidden Dark Exciton in nanocrystals, which strongly affects their photoluminescence. A theory of the band-edge exciton fine structure is presented and applied to the study of the PL in CdSe nanocrystals. The effect of doping on nanocrystal spectra is considered. The enhancement of the short–range spin-spin interaction in Mn-doped ...

836 citations