scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Therapeutic effect of Mahaenggamseok-tang on neutrophilic lung inflammation is associated with NF-κB suppression and Nrf2 activation

04 Nov 2016-Journal of Ethnopharmacology (J Ethnopharmacol)-Vol. 192, pp 486-495
TL;DR: HGST suppressed neutrophilic lung inflammation, a hallmark of ALI, which was associated with the activation of anti-inflammatory Nrf2 and the suppression of pro-inflammatory NF-κB, and suggested that MHGST has a therapeutic potential against ALI.
About: This article is published in Journal of Ethnopharmacology.The article was published on 2016-11-04. It has received 6 citations till now. The article focuses on the topics: Lung injury & Bronchoalveolar lavage.
Citations
More filters
Journal ArticleDOI
TL;DR: It is suggested that SAM can suppress a neutrophilic inflammation in mouse lungs, which is associated with suppressed NF-κB and activated Nrf2.

18 citations

Journal ArticleDOI
TL;DR: Intravenous administration of Cu/Zn SOD during HTV ventilation can prevent lung function impairment and lung injury via reducing pulmonary oxidative stress and lung inflammation, preserving pulmonary surfactant expression, and enhancing vascular NO bioavailability.
Abstract: Positive-pressure mechanical ventilation is essential in assisting patients with respiratory failure in the intensive care unit and facilitating oxygenation in the operating room. However, it was also recognized as a primary factor leading to hospital-acquired pulmonary dysfunction, in which pulmonary oxidative stress and lung inflammation had been known to play important roles. Cu/Zn superoxide dismutase (SOD) is an important antioxidant, and possesses anti-inflammatory capacity. In this study, we aimed to study the efficacy of Cu/Zn SOD, administered intravenously during high tidal volume (HTV) ventilation, to prevent impairment of lung function. Thirty-eight male Sprague-Dawley rats were divided into 3 groups: 5 h ventilation with (A) low tidal volume (LTV; 8 mL/kg; n = 10), (B) high tidal volume (HTV; 18 mL/kg; n = 14), or (C) HTV and intravenous treatment of Cu/Zn SOD at a dose of 1000 U/kg/h (HTV + SOD; n = 14). Lung function was evaluated both at baseline and after 5-h ventilation. Lung injury was assessed by histological examination, lung water and protein contents in the bronchoalveolar lavage fluid (BALF). Pulmonary oxidative stress was examined by concentrations of methylguanidine (MG) and malondialdehyde (MDA) in BALF, and antioxidative activity by protein expression of glutathione peroxidase-1 (GPx-1) in the lung. Severity of lung inflammation was evaluated by white blood cell and differential count in BALF, and protein expression of inducible nitric oxide synthase (iNOS), intercellular adhesion molecule-1 (ICAM-1), tumor necrosis factor-α (TNF-α), matrix metalloproteinase-9 (MMP-9), and mRNA expression of nuclear factor-κB (NF-κB) in the lung. We also examined protein expression of surfactant protein (SP)-A and D and we measured hourly changes in serum nitric oxide (NO) level. Five hours of LTV ventilation did not induce a major change in lung function, whereas 5 h of HTV ventilation induced apparent combined restrictive and obstructive lung disorder, together with increased pulmonary oxidative stress, decreased anti-oxidative activity and increased lung inflammation (P < 0.05). HTV ventilation also decreased SP-A and SP-D expression and suppressed serum NO level during the time course of ventilation. Cu/Zn SOD administered intravenously during HTV ventilation effectively reversed associated pulmonary oxidative stress and lung inflammation (P < 0.05); moreover, it preserved SP-A and SP-D expressions in the lung and increased serum nitric oxide (NO) level, enhancing vascular NO bioavailability. HTV ventilation can induce combined restrictive and obstructive lung disorders. Intravenous administration of Cu/Zn SOD during HTV ventilation can prevent lung function impairment and lung injury via reducing pulmonary oxidative stress and lung inflammation, preserving pulmonary surfactant expression, and enhancing vascular NO bioavailability.

13 citations


Cites background from "Therapeutic effect of Mahaenggamseo..."

  • ...Moreover, excessive lung stretch activates nuclear factor-κB (NF-κB) that mediates the production and release of proinflammatory cytokines and chemokines that, in turn, promote adhesion molecule expression [28] and facilitate inflammatory cell infiltration in lung [34]....

    [...]

Journal ArticleDOI
TL;DR: Traditional Chinese medicine formulas have been proposed and used for effective treatment of endotoxemia-like diseases and the results obtained thus far provide support for the clinical use of TCM and shed light on the underlying mechanisms.
Abstract: Lipopolysaccharide (LPS)-induced endotoxemia is a critical condition that initiates microcirculatory disturbance and may progress to multiple organ failure that threatens the lives of millions of people around the world each year. The pathology of endotoxemia involves multiple insults mediated by a range of signaling pathways. Multitarget management is required to relieve endotoxemia. Traditional Chinese medicine (TCM) is a type of therapeutic that commonly contains numerous components and, thus, exhibits multitarget potential. More importantly, some TCM formulas have been proposed and used for effective treatment of endotoxemia-like diseases. In the past 20 years, an increasing number of studies have explored the effects and mechanisms of these formulas and their major bioactive components on microcirculatory disturbance and organ injury caused by LPS. The results obtained thus far provide support for the clinical use of TCM and shed light on the underlying mechanisms.

2 citations

Journal ArticleDOI
18 Mar 2022-Medicine
TL;DR: Mahaenggamseok-tang plus Western medicine is more effective and safer than Western medicine alone for treating lower respiratory tract infections, however, better randomized randomized controlled trials are needed to make significant recommendations.
Journal ArticleDOI
04 Sep 2020-Medicine
TL;DR: A systematic review and meta-analysis will provide evidence for Mahaenggamseok-tang as a treatment for lower respiratory tract infections in pediatric patients and can help practitioners and patients recognize more effective and safer therapeutic methods.
References
More filters
Journal ArticleDOI
TL;DR: An overview of the definitions, clinical features, and epidemiology of the acute respiratory distress syndrome is provided and advances in the areas of pathogenesis, resolution, and treatment are discussed.
Abstract: The acute respiratory distress syndrome is a common, devastating clinical syndrome of acute lung injury that affects both medical and surgical patients. Since the last review of this syndrome appeared in the Journal, 1 more uniform definitions have been devised and important advances have occurred in the understanding of the epidemiology, natural history, and pathogenesis of the disease, leading to the design and testing of new treatment strategies. This article provides an overview of the definitions, clinical features, and epidemiology of the acute respiratory distress syndrome and discusses advances in the areas of pathogenesis, resolution, and treatment. Historical Perspective and Definitions . . .

5,002 citations

Journal ArticleDOI
08 Feb 2008-Cell
TL;DR: The authors synthesize some of the basic principles that have emerged from studies of NF-kappaB, and aim to generate a more unified view of the regulation of the transcription factor.

3,996 citations

Journal ArticleDOI
TL;DR: It is estimated that each year in the United States there are 190,600 cases of acute lung injury, which are associated with 74,500 deaths and 3.6 million hospital days, considerably higher than previous reports have suggested.
Abstract: BACKGROUND Acute lung injury is a critical illness syndrome consisting of acute hypoxemic respiratory failure with bilateral pulmonary infiltrates that are not attributed to left atrial hypertension. Despite recent advances in our understanding of the mechanism and treatment of acute lung injury, its incidence and outcomes in the United States have been unclear. METHODS We conducted a prospective, population-based, cohort study in 21 hospitals in and around King County, Washington, from April 1999 through July 2000, using a validated screening protocol to identify patients who met the consensus criteria for acute lung injury. RESULTS A total of 1113 King County residents undergoing mechanical ventilation met the criteria for acute lung injury and were 15 years of age or older. On the basis of this figure, the crude incidence of acute lung injury was 78.9 per 100,000 person-years and the age-adjusted incidence was 86.2 per 100,000 person-years. The in-hospital mortality rate was 38.5 percent. The incidence of acute lung injury increased with age from 16 per 100,000 person-years for those 15 through 19 years of age to 306 per 100,000 person-years for those 75 through 84 years of age. Mortality increased with age from 24 percent for patients 15 through 19 years of age to 60 percent for patients 85 years of age or older (P<0.001). We estimate that each year in the United States there are 190,600 cases of acute lung injury, which are associated with 74,500 deaths and 3.6 million hospital days. CONCLUSIONS Acute lung injury has a substantial impact on public health, with an incidence in the United States that is considerably higher than previous reports have suggested.

3,358 citations

Journal ArticleDOI
TL;DR: It is concluded that the MPO system plays an important role in the microbicidal activity of phagocytes and the role of theMPO system in tissue injury.
Abstract: Neutrophilic polymorphonuclear leukocytes (neutrophils) are highly specialized for their primary function, the phagocytosis and destruction of microorganisms. When coated with opsonins (generally complement and/or antibody), microorganisms bind to specific receptors on the surface of the phagocyte and invagination of the cell membrane occurs with the incorporation of the microorganism into an intracellular phagosome. There follows a burst of oxygen consumption, and much, if not all, of the extra oxygen consumed is converted to highly reactive oxygen species. In addition, the cytoplasmic granules discharge their contents into the phagosome, and death of the ingested microorganism soon follows. Among the antimicrobial systems formed in the phagosome is one consisting of myeloperoxidase (MPO), released into the phagosome during the degranulation process, hydrogen peroxide (H2O2), formed by the respiratory burst and a halide, particularly chloride. The initial product of the MPO-H2O2-chloride system is hypochlorous acid, and subsequent formation of chlorine, chloramines, hydroxyl radicals, singlet oxygen, and ozone has been proposed. These same toxic agents can be released to the outside of the cell, where they may attack normal tissue and thus contribute to the pathogenesis of disease. This review will consider the potential sources of H2O2 for the MPO-H2O2-halide system; the toxic products of the MPO system; the evidence for MPO involvement in the microbicidal activity of neutrophils; the involvement of MPO-independent antimicrobial systems; and the role of the MPO system in tissue injury. It is concluded that the MPO system plays an important role in the microbicidal activity of phagocytes.

2,070 citations

Journal ArticleDOI
TL;DR: Results implicate Nrf2 in the induction of the HO-1 gene but suggest that the NRF2 partner in this function is a factor other than p18 or Jun proteins.

1,226 citations