scispace - formally typeset
Journal ArticleDOI

Thermal conductivity of nanoscale colloidal solutions (nanofluids)

Reads0
Chats0
TLDR
Through an order-of-magnitude analysis of various possible mechanisms, convection caused by the Brownian movement of these nanoparticles is primarily responsible for the enhancement in k of these colloidal nanofluids.
Abstract
Researchers have been perplexed for the past five years with the unusually high thermal conductivity (k) of nanoparticle-laden colloidal solutions (nanofluids). Although various mechanisms and models have been proposed in the literature to explain the high k of these nanofluids, no concrete conclusions have been reached. Through an order-of-magnitude analysis of various possible mechanisms, we show that convection caused by the Brownian movement of these nanoparticles is primarily responsible for the enhancement in k of these colloidal nanofluids.

read more

Citations
More filters
Journal ArticleDOI

Heat transfer characteristics of nanofluids: a review

TL;DR: A review on fluid flow and heat transfer characteristics of nanofluids in forced and free convection flows is presented in this article, where the authors identify opportunities for future research.
Journal ArticleDOI

A review on applications and challenges of nanofluids

TL;DR: It has been found nan ofluids have a much higher and strongly temperature-dependent thermal conductivity at very low particle concentrations than conventional fluids, which can be considered as one of the key parameters for enhanced performances for many of the applications of nanofluids.
Journal ArticleDOI

Heat Transfer in Nanofluids—A Review

TL;DR: In this paper, the authors present an exhaustive review of the literature in this area and suggest a direction for future developments, including heat transfer, material science, physics, chemical engineering and synthetic chemistry.
Journal ArticleDOI

Review and Comparison of Nanofluid Thermal Conductivity and Heat Transfer Enhancements

TL;DR: In this article, the authors provide a detailed literature review and an assessment of results of the research and development work forming the current status of nanofluid technology for heat transfer applications.
Journal ArticleDOI

Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids

TL;DR: In this article, two empirical correlations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids, based on a high number of experimental data available in the literature, are proposed and discussed.
Related Papers (5)