scispace - formally typeset
Search or ask a question
Book

Thermal Radiation Heat Transfer

TL;DR: In this paper, a comprehensive discussion of heat transfer by thermal radiation is presented, including the radiative behavior of materials, radiation between surfaces, and gas radiation, and the use of the Monte Carlo technique in solving radiant exchange problems and problems of radiative transfer through absorbing-emitting media.
Abstract: A comprehensive discussion of heat transfer by thermal radiation is presented, including the radiative behavior of materials, radiation between surfaces, and gas radiation. Among the topics considered are property prediction by electromagnetic theory, the observed properties of solid materials, radiation in the presence of other modes of energy transfer, the equations of transfer for an absorbing-emitting gas, and radiative transfer in scattering and absorbing media. Also considered are radiation exchange between black isothermal surfaces, radiation exchange in enclosures composed of diffuse gray surfaces and in enclosures having some specularly reflecting surfaces, and radiation exchange between nondiffuse nongray surfaces. The use of the Monte Carlo technique in solving radiant-exchange problems and problems of radiative transfer through absorbing-emitting media is explained.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: A review of the literature on thermal transport in nanoscale devices can be found in this article, where the authors highlight the recent developments in experiment, theory and computation that have occurred in the past ten years and summarizes the present status of the field.
Abstract: Rapid progress in the synthesis and processing of materials with structure on nanometer length scales has created a demand for greater scientific understanding of thermal transport in nanoscale devices, individual nanostructures, and nanostructured materials. This review emphasizes developments in experiment, theory, and computation that have occurred in the past ten years and summarizes the present status of the field. Interfaces between materials become increasingly important on small length scales. The thermal conductance of many solid–solid interfaces have been studied experimentally but the range of observed interface properties is much smaller than predicted by simple theory. Classical molecular dynamics simulations are emerging as a powerful tool for calculations of thermal conductance and phonon scattering, and may provide for a lively interplay of experiment and theory in the near term. Fundamental issues remain concerning the correct definitions of temperature in nonequilibrium nanoscale systems. Modern Si microelectronics are now firmly in the nanoscale regime—experiments have demonstrated that the close proximity of interfaces and the extremely small volume of heat dissipation strongly modifies thermal transport, thereby aggravating problems of thermal management. Microelectronic devices are too large to yield to atomic-level simulation in the foreseeable future and, therefore, calculations of thermal transport must rely on solutions of the Boltzmann transport equation; microscopic phonon scattering rates needed for predictive models are, even for Si, poorly known. Low-dimensional nanostructures, such as carbon nanotubes, are predicted to have novel transport properties; the first quantitative experiments of the thermal conductivity of nanotubes have recently been achieved using microfabricated measurement systems. Nanoscale porosity decreases the permittivity of amorphous dielectrics but porosity also strongly decreases the thermal conductivity. The promise of improved thermoelectric materials and problems of thermal management of optoelectronic devices have stimulated extensive studies of semiconductor superlattices; agreement between experiment and theory is generally poor. Advances in measurement methods, e.g., the 3ω method, time-domain thermoreflectance, sources of coherent phonons, microfabricated test structures, and the scanning thermal microscope, are enabling new capabilities for nanoscale thermal metrology.

2,933 citations

Journal ArticleDOI
TL;DR: In this paper, the dependence of snow albedo on wavelength, zenith angle, grain size, impurity content, and cloud cover can be interpreted in terms of single scattering and multiple scattering radiative transfer theory.
Abstract: Measurements of the dependence of snow albedo on wavelength, zenith angle, grain size, impurity content, and cloud cover can be interpreted in terms of single-scattering and multiple-scattering radiative transfer theory. Ice is very weakly absorptive in the visible (minimum absorption at λ = 0.46 µm) but has strong absorption bands in the near infrared (near IR). Snow albedo is therefore much lower in the near IR. The near-IR solar irradiance thus plays an important role in snowmelt and in the energy balance at a snow surface. The near-IR albedo is very sensitive to snow grain size and moderately sensitive to solar zenith angle. The visible albedo (for pure snow) is not sensitive to these parameters but is instead affected by snowpack thickness and parts-per-million amounts (or less) of impurities. Grain size normally increases as the snow ages, causing a reduction in albedo. If the grain size increases as a function of depth, the albedo may suffer more reduction in the visible or in the near IR, depending on the rate of grain size increase. The presence of liquid water has little effect per se on snow optical properties in the solar spectrum, in contrast to its enormous effect on microwave emissivity. Snow albedo is increased at all wavelengths as the solar zenith angle increases but is most sensitive around λ =1 µm. Many apparently conflicting measurements of the zenith angle dependence of albedo are difficult to interpret because of modeling error, instrument error, and inadequate documentation of grain size, surface roughness, and incident radiation spectrum. Cloud cover affects snow albedo both by converting direct radiation into diffuse radiation and also by altering the spectral distribution of the radiation. Cloud cover normally causes an increase in spectrally integrated snow albedo. Some measurements of spectral flux extinction in snow are difficult to reconcile with the spectral albedo measurements. The bidirectional reflectance distribution function which apportions the reflected solar radiation among the various reflection angles must be known in order to interpret individual satellite measurements. It has been measured at the snow surface and at the top of the atmosphere, but its dependence on wavelength, snow grain size, and surface roughness is still unknown. Thermal infrared emissivity of snow is close to 100% but is a few percent lower at large viewing angles than for overhead viewing. It is very insensitive to grain size, impurities, snow depth, liquid water content, or density. Solar reflectance and microwave emissivity are both sensitive to various of these snowpack parameters. However, none of these parameters can be uniquely determined by satellite measurements at a single wavelength; a multichannel method is thus necessary if they are to be determined by remote sensing.

1,212 citations

Journal ArticleDOI
TL;DR: This tutorial survey paper reviews several different models for light interaction with volume densities of absorbing, glowing, reflecting, and/or scattering material, and provides the physical assumptions, applications for which it is appropriate, and calculation methods for solving them.
Abstract: This tutorial survey paper reviews several different models for light interaction with volume densities of absorbing, glowing, reflecting, and/or scattering material. They are, in order of increasing realism, absorption only, emission only, emission and absorption combined, single scattering of external illumination without shadows, single scattering with shadows, and multiple scattering. For each model the paper provides the physical assumptions, describes the applications for which it is appropriate, derives the differential or integral equations for light transport, presents calculation methods for solving them, and shows output images for a data set representing a cloud. Special attention is given to calculation methods for the multiple scattering model. >

990 citations

Journal ArticleDOI
TL;DR: A full solar thermophotovoltaic device is reported on, which, thanks to the nanophotonic properties of the absorber-emitter surface, reaches experimental efficiencies of 3.2%.
Abstract: The most common approaches to generating power from sunlight are either photovoltaic, in which sunlight directly excites electron-hole pairs in a semiconductor, or solar-thermal, in which sunlight drives a mechanical heat engine. Photovoltaic power generation is intermittent and typically only exploits a portion of the solar spectrum efficiently, whereas the intrinsic irreversibilities of small heat engines make the solar-thermal approach best suited for utility-scale power plants. There is, therefore, an increasing need for hybrid technologies for solar power generation. By converting sunlight into thermal emission tuned to energies directly above the photovoltaic bandgap using a hot absorber-emitter, solar thermophotovoltaics promise to leverage the benefits of both approaches: high efficiency, by harnessing the entire solar spectrum; scalability and compactness, because of their solid-state nature; and dispatchablility, owing to the ability to store energy using thermal or chemical means. However, efficient collection of sunlight in the absorber and spectral control in the emitter are particularly challenging at high operating temperatures. This drawback has limited previous experimental demonstrations of this approach to conversion efficiencies around or below 1% (refs 9, 10, 11). Here, we report on a full solar thermophotovoltaic device, which, thanks to the nanophotonic properties of the absorber-emitter surface, reaches experimental efficiencies of 3.2%. The device integrates a multiwalled carbon nanotube absorber and a one-dimensional Si/SiO2 photonic-crystal emitter on the same substrate, with the absorber-emitter areas optimized to tune the energy balance of the device. Our device is planar and compact and could become a viable option for high-performance solar thermophotovoltaic energy conversion.

755 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of surface roughness on the three primary components of a reflectance model is analyzed in detail, and the conditions that determine the validity of the model are clearly stated.
Abstract: Reflectance models based on physical optics and geometrical optics are studied. Specifically, the authors consider the Beckmann-Spizzichino (physical optics) model and the Torrance-Sparrow (geometrical optics) model. These two models were chosen because they have been reported to fit experimental data well. Each model is described in detail, and the conditions that determine the validity of the model are clearly stated. By studying reflectance curves predicted by the two models, the authors propose a reflectance framework comprising three components: the diffuse lobe, the specular lobe, and the specular spike. The effects of surface roughness on the three primary components are analyzed in detail. >

737 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors present a statistical approach to the study of integro-differential equations that occur in various branches of the natural sciences, such as biology and chemistry.
Abstract: We shall present here the motivation and a general description of a method dealing with a class of problems in mathematical physics. The method is, essentially, a statistical approach to the study of differential equations, or more generally, of integro-differential equations that occur in various branches of the natural sciences.

5,432 citations

Book
01 Jan 1963
TL;DR: The scattering of electromagnetic waves from rough surfaces PDF is available at the online library of the University of Southern California as mentioned in this paper, where a complete collection of electromagnetic wave from rough surface books can be found.
Abstract: THE SCATTERING OF ELECTROMAGNETIC WAVES FROM ROUGH SURFACES PDF Are you looking for the scattering of electromagnetic waves from rough surfaces Books? Now, you will be happy that at this time the scattering of electromagnetic waves from rough surfaces PDF is available at our online library. With our complete resources, you could find the scattering of electromagnetic waves from rough surfaces PDF or just found any kind of Books for your readings everyday.

3,568 citations