scispace - formally typeset
Journal ArticleDOI

Thermal response in van der Waals heterostructures.

Reads0
Chats0
TLDR
The results indicate that the important superlattice design approach of thermoelectrics (to reduce the thermal conductivity) may be effective for two-dimensional van der Waals materials when used in conjunction with intercalation.
Abstract
We solve numerically the Boltzmann transport equations of the phonons and electrons to understand the thermoelectric response in heterostructures of M2CO2 (M: Ti, Zr, Hf) MXenes with transition metal dichalcogenide monolayers. Low frequency optical phonons are found to occur as a consequence of the van der Waals bonding, contribute significantly to the thermal transport, and compensate for the reduced contributions of the acoustic phonons (increased scattering cross-sections in heterostructures), such that the thermal conductivities turn out to be similar to those of the bare MXenes. Our results indicate that the important superlattice design approach of thermoelectrics (to reduce the thermal conductivity) may be effective for two-dimensional van der Waals materials when used in conjunction with intercalation.

read more

Citations
More filters
Journal ArticleDOI

Electronic properties and applications of MXenes: a theoretical review

TL;DR: In this paper, a review highlights the computational attempts that have been made to understand the physics and chemistry of this very promising family of advanced two-dimensional materials, and to exploit their novel and exceptional properties for electronic and energy harvesting applications.
Journal ArticleDOI

Two-dimensional MXenes: From morphological to optical, electric, and magnetic properties and applications

TL;DR: In this article, the state-of-the-art progress on MXene theory, materials synthesis techniques, morphology modifications, opto-electro-magnetic properties, and their applications are comprehensively discussed.
Journal ArticleDOI

Electronic properties and applications of MXenes: a theoretical review

TL;DR: In this paper, a review highlights the computational attempts that have been made to understand the physics and chemistry of this very promising family of advanced two-dimensional materials, and to exploit their novel and exceptional properties for electronic and energy harvesting applications.
Journal ArticleDOI

Colloquium: Phononic thermal properties of two-dimensional materials

TL;DR: In this article, a framework is presented that shows how phonon scattering in 2D materials influences thermal transport properties that depend on geometry, substrate and interlayer coupling, and imperfections.
Journal ArticleDOI

Survey of ab initio phonon thermal transport

TL;DR: A comprehensive survey of first-principles Peierls-Boltzmann thermal transport can be found in this article, with particular focus on more recent advances, highlighting the wide variety of calculations accessible to first-partciples transport methods (including dimensionality, pressure, and defects).
References
More filters
Journal ArticleDOI

Generalized Gradient Approximation Made Simple

TL;DR: A simple derivation of a simple GGA is presented, in which all parameters (other than those in LSD) are fundamental constants, and only general features of the detailed construction underlying the Perdew-Wang 1991 (PW91) GGA are invoked.
Journal ArticleDOI

Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set.

TL;DR: An efficient scheme for calculating the Kohn-Sham ground state of metallic systems using pseudopotentials and a plane-wave basis set is presented and the application of Pulay's DIIS method to the iterative diagonalization of large matrices will be discussed.
Journal ArticleDOI

A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu

TL;DR: The revised DFT-D method is proposed as a general tool for the computation of the dispersion energy in molecules and solids of any kind with DFT and related (low-cost) electronic structure methods for large systems.
Journal ArticleDOI

Van der Waals heterostructures

TL;DR: With steady improvement in fabrication techniques and using graphene’s springboard, van der Waals heterostructures should develop into a large field of their own.
Journal ArticleDOI

Improved tetrahedron method for Brillouin-zone integrations

TL;DR: In this article, the tetrahedron method was used for Brillouin-zone integrations and a translational grid of k points and tetrahedral elements was proposed to obtain results for insulators identical to those obtained with special-point methods with the same number of points.