scispace - formally typeset
Search or ask a question

THÈSE / UNIVERSITÉ DE RENNES 1 sous le sceau de l'Université Européenne de Bretagne pour le grade de DOCTEUR DE L'UNIVERSITÉ DE RENNES 1 Mention : Informatique

01 Jan 2013-
About: The article was published on 2013-01-01 and is currently open access. It has received 3 citations till now.
Citations
More filters
Dissertation
01 Jan 1975

2,119 citations

01 Jan 2009
TL;DR: A generalization of similarity skylines which is able to deal with uncertain data described in terms of interval or fuzzy attribute values and is applied to similarity search over uncertain archaeological data.
Abstract: Conventional approaches to similarity search and case-based retrieval, such as nearest neighbor search, require the specification of a global similarity measure which is typically expressed as an aggregation of local measures pertaining to different aspects of a case. Since the proper aggregation of local measures is often quite difficult, we propose a novel concept called similarity skyline. Roughly speaking, the similarity skyline of a case base is defined by the subset of cases that are most similar to a given query in a Pareto sense. Thus, the idea is to proceed from a d-dimensional comparison between cases in terms of d(local) distance measures and to identify those cases that are maximally similar in the sense of the Pareto dominance relation [2]. To refine the retrieval result, we propose a method for computing maximally diverse subsets of a similarity skyline. Moreover, we propose a generalization of similarity skylines which is able to deal with uncertain data described in terms of interval or fuzzy attribute values. The method is applied to similarity search over uncertain archaeological data.

15 citations

Journal Article
TL;DR: In this article, the authors discuss the handling of bipolar queries in the framework of possibility theory, i.e. queries involving negative and positive preferences, in the context of flexible queries.
Abstract: The paper advocates the interest of distinguishing between negative and positive preferences in the processing of flexible queries. Negative preferences express what is (more or less, or completely) impossible or undesirable, and by complementation state flexible constraints restricting the possible or acceptable values. Positive preferences are not compulsory, but rather express wishes; they state what attribute values would be really satisfactory. The paper discusses the handling of bipolar queries, i.e. queries involving negative and positive preferences, in the framework of possibility theory. Both ordinary queries expressed in terms of requirements, and case-based queries referring to examples, are considered in this perspective.

4 citations

References
More filters
Book
01 Aug 1996
TL;DR: A separation theorem for convex fuzzy sets is proved without requiring that the fuzzy sets be disjoint.
Abstract: A fuzzy set is a class of objects with a continuum of grades of membership. Such a set is characterized by a membership (characteristic) function which assigns to each object a grade of membership ranging between zero and one. The notions of inclusion, union, intersection, complement, relation, convexity, etc., are extended to such sets, and various properties of these notions in the context of fuzzy sets are established. In particular, a separation theorem for convex fuzzy sets is proved without requiring that the fuzzy sets be disjoint.

52,705 citations

Book
01 Jan 1979
TL;DR: The second edition of a quarterly column as discussed by the authors provides a continuing update to the list of problems (NP-complete and harder) presented by M. R. Garey and myself in our book "Computers and Intractability: A Guide to the Theory of NP-Completeness,” W. H. Freeman & Co., San Francisco, 1979.
Abstract: This is the second edition of a quarterly column the purpose of which is to provide a continuing update to the list of problems (NP-complete and harder) presented by M. R. Garey and myself in our book ‘‘Computers and Intractability: A Guide to the Theory of NP-Completeness,’’ W. H. Freeman & Co., San Francisco, 1979 (hereinafter referred to as ‘‘[G&J]’’; previous columns will be referred to by their dates). A background equivalent to that provided by [G&J] is assumed. Readers having results they would like mentioned (NP-hardness, PSPACE-hardness, polynomial-time-solvability, etc.), or open problems they would like publicized, should send them to David S. Johnson, Room 2C355, Bell Laboratories, Murray Hill, NJ 07974, including details, or at least sketches, of any new proofs (full papers are preferred). In the case of unpublished results, please state explicitly that you would like the results mentioned in the column. Comments and corrections are also welcome. For more details on the nature of the column and the form of desired submissions, see the December 1981 issue of this journal.

40,020 citations