scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Thin films composed of Au nanoparticles embedded in AlN: Influence of metal concentration and thermal annealing on the LSPR band

TL;DR: In this paper, the possibility of using aluminium nitride (AlN) as a host dielectric matrix for LSPR films was evaluated, and three sets of nanocomposite Au:AlN films were prepared by magnetron sputtering, followed by thermal annealing to promote the growth of the nanoparticles.
About: This article is published in Vacuum.The article was published on 2018-11-01. It has received 22 citations till now. The article focuses on the topics: Nanocomposite & Nanoparticle.
Citations
More filters
Journal ArticleDOI
TL;DR: Experimental results demonstrated the successful functionalization of the films' surface with antibodies, with the immobilization occurring preferentially in the exposed nanoparticles and negligibly on the TiO2 matrix, which demonstrates the suitability for the development of cost-effective, label-free LSPR based immunosensor devices.

26 citations

Journal ArticleDOI
TL;DR: In this article, thin films composed of monometallic Au and Ag, and bimetallic Au Ag nanoparticles, dispersed in a CuO matrix were prepared, characterised and tested for Localized Surface Plasmon Resonance (LSPR) sensing.

23 citations

Journal ArticleDOI
TL;DR: In this article, the Portuguese Foundation for Science and Technology (FCT) funded the research of Marco S. Rodrigues and his colleagues in the context of the Strategic Funding UIDB/04650/2020.
Abstract: This research was funded by the Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Funding UIDB/04650/2020; and by the project NANO4BIO POCI-01-0145-FEDER-032299, with FCT reference PTDC/FISMAC/32299/2017. Marco S. Rodrigues acknowledges FCT for his PhD Scholarship, SFRH/BD/118684/2016.

21 citations

Journal ArticleDOI
TL;DR: The results showed that the Au:CuO thin film system is a RI sensitive platform able to detect inert gases, which can be more sensitive to detect non-inert gases as O2 or even other reactive species.
Abstract: Gas sensing based on bulk refractive index (RI) changes, has been a challenging task for localized surface plasmon resonance (LSPR) spectroscopy, presenting only a limited number of reports in this field. In this work, it is demonstrated that a plasmonic thin film composed of Au nanoparticles embedded in a CuO matrix can be used to detect small changes (as low as 6 × 10-5 RIU) in bulk RI of gases at room temperature, using a high-resolution LSPR spectroscopy system. To optimize the film's surface, a simple Ar plasma treatment revealed to be enough to remove the top layers of the film and to partially expose the embedded nanoparticles, and thus enhance the film's gas sensing capabilities. The treated sample exhibits high sensitivity to inert gases (Ar, N2), presenting a refractive index sensitivity (RIS) to bulk RI changes of 425 nm/RIU. Furthermore, a 2-fold signal increase is observed for O2, showing that the film is clearly more sensitive to this gas due to its oxidizing nature. The results showed that the Au:CuO thin film system is a RI sensitive platform able to detect inert gases, which can be more sensitive to detect noninert gases as O2 or even other reactive species.

17 citations

Journal ArticleDOI
TL;DR: The goal was to assess the nanostructural characteristics and correlate them with the optical properties of the AuNPs, particularly the localized surface plasmon resonance (LSPR) behavior, and to provide the identification of "hot-spots".
Abstract: Plasmonic Au nanoparticles (AuNPs) embedded into a TiO2 dielectric matrix were analyzed by combining two-dimensional and three-dimensional electron microscopy techniques. The preparation method was reactive magnetron sputtering, followed by thermal annealing treatments at 400 and 600 °C. The goal was to assess the nanostructural characteristics and correlate them with the optical properties of the AuNPs, particularly the localized surface plasmon resonance (LSPR) behavior. High-angle annular dark field-scanning transmission electron microscopy results showed the presence of small-sized AuNPs (quantum size regime) in the as-deposited Au–TiO2 film, resulting in a negligible LSPR response. The in-vacuum thermal annealing at 400 °C induced the formation of intermediate-sized nanoparticles (NPs), in the range of 10–40 nm, which led to the appearance of a well-defined LSPR band, positioned at 636 nm. Electron tomography revealed that most of the NPs are small-sized and are embedded into the TiO2 matrix, whereas...

15 citations

References
More filters
Journal ArticleDOI
14 Aug 2003-Nature
TL;DR: By altering the structure of a metal's surface, the properties of surface plasmons—in particular their interaction with light—can be tailored, which could lead to miniaturized photonic circuits with length scales that are much smaller than those currently achieved.
Abstract: Surface plasmons are waves that propagate along the surface of a conductor. By altering the structure of a metal's surface, the properties of surface plasmons--in particular their interaction with light--can be tailored, which offers the potential for developing new types of photonic device. This could lead to miniaturized photonic circuits with length scales that are much smaller than those currently achieved. Surface plasmons are being explored for their potential in subwavelength optics, data storage, light generation, microscopy and bio-photonics.

10,689 citations

Journal ArticleDOI
TL;DR: Recent advances at the intersection of plasmonics and photovoltaics are surveyed and an outlook on the future of solar cells based on these principles is offered.
Abstract: The emerging field of plasmonics has yielded methods for guiding and localizing light at the nanoscale, well below the scale of the wavelength of light in free space. Now plasmonics researchers are turning their attention to photovoltaics, where design approaches based on plasmonics can be used to improve absorption in photovoltaic devices, permitting a considerable reduction in the physical thickness of solar photovoltaic absorber layers, and yielding new options for solar-cell design. In this review, we survey recent advances at the intersection of plasmonics and photovoltaics and offer an outlook on the future of solar cells based on these principles.

8,028 citations

Journal ArticleDOI
13 Dec 2002-Science
TL;DR: Monodisperse samples of silver nanocubes were synthesized in large quantities by reducing silver nitrate with ethylene glycol in the presence of poly(vinyl pyrrolidone) (PVP), characterized by a slightly truncated shape bounded by {100, {110}, and {111} facets.
Abstract: Monodisperse samples of silver nanocubes were synthesized in large quantities by reducing silver nitrate with ethylene glycol in the presence of poly(vinyl pyrrolidone) (PVP). These cubes were single crystals and were characterized by a slightly truncated shape bounded by {100}, {110}, and {111} facets. The presence of PVP and its molar ratio (in terms of repeating unit) relative to silver nitrate both played important roles in determining the geometric shape and size of the product. The silver cubes could serve as sacrificial templates to generate single-crystalline nanoboxes of gold: hollow polyhedra bounded by six {100} and eight {111} facets. Controlling the size, shape, and structure of metal nanoparticles is technologically important because of the strong correlation between these parameters and optical, electrical, and catalytic properties.

5,992 citations

Journal ArticleDOI
TL;DR: The basic concepts behind plasmonics-enabled light concentration and manipulation are discussed, an attempt to capture the wide range of activities and excitement in this area is made, and possible future directions are speculated on.
Abstract: The unprecedented ability of nanometallic (that is, plasmonic) structures to concentrate light into deep-subwavelength volumes has propelled their use in a vast array of nanophotonics technologies and research endeavours. Plasmonic light concentrators can elegantly interface diffraction-limited dielectric optical components with nanophotonic structures. Passive and active plasmonic devices provide new pathways to generate, guide, modulate and detect light with structures that are similar in size to state-of-the-art electronic devices. With the ability to produce highly confined optical fields, the conventional rules for light-matter interactions need to be re-examined, and researchers are venturing into new regimes of optical physics. In this review we will discuss the basic concepts behind plasmonics-enabled light concentration and manipulation, make an attempt to capture the wide range of activities and excitement in this area, and speculate on possible future directions.

3,953 citations

Journal ArticleDOI
TL;DR: This work presents a meta-analysis of the literature on food quality and safety analysis and its applications in the context of veterinary drugs and drugs and drug-Induced Antibodies, which focuses on the role of canine coronavirus in the veterinary industry.
Abstract: 5.1. Detection Formats 475 5.2. Food Quality and Safety Analysis 477 5.2.1. Pathogens 477 5.2.2. Toxins 479 5.2.3. Veterinary Drugs 479 5.2.4. Vitamins 480 5.2.5. Hormones 480 5.2.6. Diagnostic Antibodies 480 5.2.7. Allergens 481 5.2.8. Proteins 481 5.2.9. Chemical Contaminants 481 5.3. Medical Diagnostics 481 5.3.1. Cancer Markers 481 5.3.2. Antibodies against Viral Pathogens 482 5.3.3. Drugs and Drug-Induced Antibodies 483 5.3.4. Hormones 483 5.3.5. Allergy Markers 483 5.3.6. Heart Attack Markers 484 5.3.7. Other Molecular Biomarkers 484 5.4. Environmental Monitoring 484 5.4.1. Pesticides 484 5.4.2. 2,4,6-Trinitrotoluene (TNT) 485 5.4.3. Aromatic Hydrocarbons 485 5.4.4. Heavy Metals 485 5.4.5. Phenols 485 5.4.6. Polychlorinated Biphenyls 487 5.4.7. Dioxins 487 5.5. Summary 488 6. Conclusions 489 7. Abbreviations 489 8. Acknowledgment 489 9. References 489

3,698 citations

Related Papers (5)