scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

Thirty Years of Gas Shale Fracturing: What Have We Learned?

01 Jan 2010-
About: The article was published on 2010-01-01. It has received 575 citations till now. The article focuses on the topics: Oil shale.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present new core and outcrop data from 18 shale plays that reveal common types of shale fractures and their mineralization, orientation, and size patterns, and identify a need for further work in this field and on the role of natural fractures generally.
Abstract: Natural fractures have long been suspected as a factor in production from shale reservoirs because gas and oil production commonly exceeds the rates expected from low-porosity and low-permeability shale host rock. Many shale outcrops, cores, and image logs contain fractures or fracture traces, and microseismic event patterns associated with hydraulic-fracture stimulation have been ascribed to natural fracture reactivation. Here we review previous work, and present new core and outcrop data from 18 shale plays that reveal common types of shale fractures and their mineralization, orientation, and size patterns. A wide range of shales have a common suite of types and configurations of fractures: those at high angle to bedding, faults, bed-parallel fractures, early compacted fractures, and fractures associated with concretions. These fractures differ markedly in their prevalence and arrangement within each shale play, however, constituting different fracture stratigraphies—differences that depend on interface and mechanical properties governed by depositional, diagenetic, and structural setting. Several mechanisms may act independently or in combination to cause fracture growth, including differential compaction, local and regional stress changes associated with tectonic events, strain accommodation around large structures, catagenesis, and uplift. Fracture systems in shales are heterogeneous; they can enhance or detract from producibility, augment or reduce rock strength and the propensity to interact with hydraulic-fracture stimulation. Burial history and fracture diagenesis influence fracture attributes and may provide more information for fracture prediction than is commonly appreciated. The role of microfractures in production from shale is currently poorly understood yet potentially critical; we identify a need for further work in this field and on the role of natural fractures generally.

709 citations

Journal ArticleDOI
TL;DR: In this paper, the benefits and drawbacks of using CO2 as a working fluid for shale gas production were analyzed using a combination of new experimental and modeling data at multiple scales, and the potential advantages of CO2 including enhanced fracturing and fracture propagation, reduction of flow blocking mechanisms, increased desorption of methane adsorbed in organic-rich parts of the shale, and a reduction or elimination of the deep re-injection of flow-back water that has been linked to induced seismicity and other environmental concerns.

589 citations

Proceedings ArticleDOI
01 Jan 2012
TL;DR: A detailed explanation of well development activities from well construction to production can be found in this paper, along with an initial estimation of frac risk and alternatives to reduce the risk, documented by literature and case histories.
Abstract: Identification of risk, the potential for occurrence of an event and impact of that event, is the first step in improving a process by ranking risk elements and controlling potential harm from occurrence of a detrimental event. Hydraulic Fracturing has become a hot environmental discussion topic and a target of media articles and University studies during development of gas shales near populated areas. The furor over fracturing and frac waste disposal was largely driven by lack of chemical disclosure and the pre2008 laws of some states. The spectacular increase in North American natural gas reserves created by shale gas development makes shale gas a disruptive technology, threatening profitability and continued development of other energy sources. Introduction of such a disruptive force as shale gas will invariably draw resistance, both monetary and political, to attack the disruptive source, or its enabler; hydraulic fracturing. Some ―anti-frack‖ charges in media articles and university studies are based in fact and require a stateby-state focused improvement of well design specific for geology of the area and oversight of overall well development. Other articles have demonstrated either a severe misunderstanding or an intentional misstatement of well development processes, apparently to attack the disruptive source. Transparency requires cooperation from all sides in the debate. To enable more transparency on the oil and gas side, both to assist in the understanding of oil and gas activities and to set a foundation for rational discussion of fracturing risks, a detailed explanation of well development activities is offered in this paper, from well construction to production, written at a level of general public understanding, along with an initial estimation of frac risk and alternatives to reduce the risk, documented by literature and case histories. This discussion is a starting point for the well development descriptions and risk evaluation discussions, not an ending point. Introduction to Risk There are no human endeavors without risk. ―Risk management is the identification, assessment and prioritization of risks followed by coordinated and economical application of resources to minimize, monitor and control probability and/or impact of unfortunate effects‖ (Wikipedia). Managing these risks and communicating both risks and changes to reduce risks are part of an often repeated approach termed ―license to operate‖ (Liroff, 2011). At a minimum, basic risk concerns are: People, Economic Loss (to all concerned), Environmental Damage and Reputation Loss. Figure 1, a standard loss matrix used by Apache Canada in the Horn River development (DeMong, 2010), is a good starting place for the discussion. Consequences run from slight and practically unavoidable to severe and avoidable at all costs. This paper, for purposes of brevity, will focus solely on risk to the environment from hydraulic fracturing operations, starting with transport of materials and ending when the well is routed to the production facilities and gas sales begin. The form of Figure 1 will be expanded and comments and

541 citations

Journal ArticleDOI
TL;DR: Net water use for shale-gas production in the U.S. is quantified using data from Texas, which is the dominant producer of shale gas, with a focus on three major plays: the Barnett Shale, Texas-Haynesville Shale and Eagle Ford Shale.
Abstract: Shale-gas production using hydraulic fracturing of mostly horizontal wells has led to considerable controversy over water-resource and environmental impacts. The study objective was to quantify net water use for shale-gas production using data from Texas, which is the dominant producer of shale gas in the U.S. with a focus on three major plays: the Barnett Shale (∼15 000 wells, mid-2011), Texas-Haynesville Shale (390 wells), and Eagle Ford Shale (1040 wells). Past water use was estimated from well-completion data, and future water use was extrapolated from past water use constrained by shale-gas resources. Cumulative water use in the Barnett totaled 145 Mm3 (2000–mid-2011). Annual water use represents ∼9% of water use in Dallas (population 1.3 million). Water use in younger (2008–mid-2011) plays, although less (6.5 Mm3 Texas-Haynesville, 18 Mm3 Eagle Ford), is increasing rapidly. Water use for shale gas is <1% of statewide water withdrawals; however, local impacts vary with water availability and competin...

466 citations

Journal ArticleDOI
15 Jul 2014-Fuel
TL;DR: In this paper, the effects of multiple factors on propagating rules of fractures of horizontal well in shale with hydraulic fracturing were studied, and the fracture morphology of post-fracturing rock cores was observed for the first time by high-energy CT scanning using the large-scale non-destructive testing system based on linear accelerator.

370 citations

References
More filters
Journal ArticleDOI
TL;DR: Enginsera et al. as discussed by the authors proposed an idealized model for the purpose of studying the characteristic behavior of a permeable medium which contains regions which contribute significantly to the pore volume of the system but contribute negligibly to the flow capacity.
Abstract: An idealized model has been developed for the purpose of studying the characteristic behavioroja permeable medium which contains regions which contribute sigizificantly to tbe pore volume O! the system but contribute negligibly to the flow capacity; e.g., a naturally fractured or vugular reservoir, Vnsteady-state flow in this model reservoir has been investigated analytically. The pressure buiid-up performance has been examined insomedetait; and, a technique foranalyzing tbebuild.up data to evaluate the desired parameters has been suggested. The use of this ap$roacb in the interpretation of field data has been discussed. As a result of this study, the following general conclusions can be drawn: 1. Two parameters are sufficient to characterize the deviation of the behavior of a medium with “double porosity ”from that of a homogeneously porous medium. 2. These Parameters can be evaluated by the proper analy~is of pressure buildup data ob~ained from adequately designed tests. 3. Since the build-up curve associated with this type of porous system is similar to that obtained from a stratified reservoir, an unambiguous interpretation is not possible without additional information. 4, Dif@rencing methods which utilize pressure data from the /inal stages of a buik-kp test should be used with extreme caution. INTRODUCTION In order to plan a sound exploitation program or a successful secondary-recovery pro ject, sufficient reliable information concerning the nature of the reservoir-fluid system must be available. Sincef it is evident chat an adequate description of the reservoir rock is necessary if this condition is to be fulfilled, the present investigation was undertaken for the purpose of improving the fluid-flow characterization, based on normally available data, ofs particular porous medium. DISCUSSION OF THE PROBLEM For many years it was widely assumed that, for the purpose of making engineering studies, two psram. . -. . Origlml manuscriptreceived fn eociaty of Petroleum Ertatneere offiae AUS. 17, 1962.Revieed manuscriptreceived.March21, 1963. P eper pr+$eented at the Fetl Meeting of the %ciot Y of. Petreleum Enginsera In Lo= Ar@Ies on Oct. 7-10, 1962. ‘ . GULF RESEARCH d DEVELOPMENT CO. PITTSBURGH, PA, eters were sufficient to desckibe the single-phase flow properties of a prodttcing formation, i.e., the absolute permeability and the effective porosity. It : later became evident that the concept of directional permeability was of more thin academic interest; consequently, the de$ee of permeability anisotropy and the orientation of the principal axes of permeability were accepted as basic parameters governing reservoir performance. 1,2 More recently, 3“6 it was recognized that at least one additional parameter was required to depict the behavior of a porous system containing region,s which contributed significantly to the pore volume but contributed negligibly to the flow capacity. Microscopically, these regions could be “dead-end” or “storage” pores or, microscopically, they could be discrete volumes of lowpermeability inatrix rock combined with natural fissures in a reservoir. It is obvious thst some provision for the ;.ncIusion of all the indicated parameters, as weIl as their spatial vstiations$ must be made if a truly useful, conceptual model of a reaetvoir is to be developed. A dichotomy Qf the internaI voids of reservoir rocks has been suggested, r~s These two classes of porosity can be described as follows: a. Primary porosity is intergranular and controlled by deposition and Iithification. It ie highly intercoririected arid “usually can be correlated with permeability since it is largely dependent on the geometry, size distribution and spatial distribution of the grains. The void systems of sands, sandstones and oolitic limestones are typical of this type. b. Secondary porosity is foramenular and is controlled by fracturing, jointing and/or solution in circulating water although it may be modified by infilling as a result of precipitation. It is not highly interconnected and usually cannot be correlated with permeability. Solution channels or vugular voids developed during weathering or buriaI in sedimentary basins are indigenous to carbonate rocks such as limestones or dolomites. Joints or fissures which occur in massive, extensive formations composed of shale, siltstone, schist, limestone or dolomite are generally vertical, and they are ascribed to tensional failure, during mechanical deformation (the permeability associated with this type of void system is often anisotropic). Shrinkage cracks are the result 1 ~ef&ence. aiven atendof p@er. ‘-

3,373 citations

Journal ArticleDOI
TL;DR: In this article, the authors estimate that the Barnett Shale has a total generation potential of about 609 bbl of oil equivalent/ac-ft or the equivalent of 3657 mcf/acft (84.0 m 3 /m 3 ).
Abstract: Shale-gas resource plays can be distinguished by gas type and system characteristics. The Newark East gas field, located in the Fort Worth Basin, Texas, is defined by thermogenic gas production from low-porosity and low-permeability Barnett Shale. The Barnett Shale gas system, a self-contained source-reservoir system, has generated large amounts of gas in the key productive areas because of various characteristics and processes, including (1) excellent original organic richness and generation potential; (2) primary and secondary cracking of kerogen and retained oil, respectively; (3) retention of oil for cracking to gas by adsorption; (4) porosity resulting from organic matter decomposition; and (5) brittle mineralogical composition. The calculated total gas in place (GIP) based on estimated ultimate recovery that is based on production profiles and operator estimates is about 204 bcf/section (5.78 × 10 9 m 3 /1.73 × 10 4 m 3 ). We estimate that the Barnett Shale has a total generation potential of about 609 bbl of oil equivalent/ac-ft or the equivalent of 3657 mcf/ac-ft (84.0 m 3 /m 3 ). Assuming a thickness of 350 ft (107 m) and only sufficient hydrogen for partial cracking of retained oil to gas, a total generation potential of 820 bcf/section is estimated. Of this potential, approximately 60% was expelled, and the balance was retained for secondary cracking of oil to gas, if sufficient thermal maturity was reached. Gas storage capacity of the Barnett Shale at typical reservoir pressure, volume, and temperature conditions and 6% porosity shows a maximum storage capacity of 540 mcf/ac-ft or 159 scf/ton.

2,418 citations

Proceedings ArticleDOI
01 Jan 2008
TL;DR: Wang et al. as mentioned in this paper conducted a study on the relationship between the wireline log analysis and measured mineralogy, acid solubility, and capillary suction time test results for shale reservoirs.
Abstract: The most common fallacy in the quest for the optimum stimulation treatment in shale plays across the country is to treat them all just like the Barnett Shale. There is no doubt that the Barnett Shale play in the Ft. Worth Basin is the “granddaddy” of shale plays and everyone wants their shale play to be “just like the Barnett Shale.” The reality is that shale plays are similar to any other coalbed methane or tight sand play; each reservoir is unique and the stimulation and completion method should be determined based on its individual petrophysical attributes. The journey of selecting the completion style for an emerging shale play begins in the laboratory. An understanding of the mechanical rock properties and mineralogy is essential to help understand how the shale reservoir should be completed. Actual measurements of absorption-desorption isotherm, kerogen type, and volume are also critical pieces of information needed to find productive shale reservoirs. With this type of data available, significant correlations can be drawn by integrating the wireline log data as a tool to estimate the geochemical analysis. Thus, the wireline log analysis, once calibrated with core measurements, is a very useful tool in extending the reservoir understanding and stimulation design as one moves away from the wellbore where actual lab data was measured. A recent study was conducted to review a laboratory database representing principal shale mineralogy and wireline log data from many of the major shale plays. The results of this study revealed some statistically significant correlations between the wireline log analysis and measured mineralogy, acid solubility, and capillary suction time test results for shale reservoirs. A method was also derived to calculate mechanical rock properties from mineralogy. Understanding mineralogy and fluid sensitivity, especially for shale reservoirs, is essential in optimizing the completion and stimulation treatment for the unique attributes of each shale play. The results of this study have been in petrophysical models driven by wireline logs that are common in the industry to classify the shale by lithofacies, brittleness, and to emulate the lab measurement of acid solubility and capillary suction time test. This is the first step in determining if a particular shale is a viable resource, and which stimulation method will provide a stimulation treatment development and design. A systematic approach of validating the wireline log calculations with specialized core analysis and a little “tribal” knowledge can help move a play from concept to reality by minimizing the failures and shortening the learning cycle time associated with a commercially successful project. Introduction Producing methane from shale has been practiced in North America for more than 180 years. The first known well in the U.S. drilled to produce natural gas for commercial purposes was in 1821 outside of Fredonia, N.Y. (2008 www.britannica.com). This well produced from a fractured organic-rich shale through a hand dug well. It was produced for more than 75 years. Production from the Antrim shale in the Michigan Basin started in 1936. Today, there are more than 9,000 wells producing, most of which were drilled after 1987. The Barnett Shale, discovered in 1981, is being produced from more than 8,000 wells today (Wang 2008). Fig. 1 represents the growth of the Barnett Shale play in the Newark, East field in the Ft. Worth basin. The cumulative gas production from this field is more than 4 Tcf. One could characterize the success of this play as: the right market, the right people, and the right technology (Wang 2008). The key technologies for the Barnett Shale success revolve around horizontal drilling and hydraulic fracture stimulation.

977 citations

Journal ArticleDOI
TL;DR: In this article, the authors characterized natural fractures in four Barnett Shale cores in terms of orientation, size, and sealing properties, and they measured a mechanical rock property, the subcritical crack index, which governs fracture pattern development.
Abstract: Gas production from the Barnett Shale relies on hydraulic fracture stimulation. Natural opening-mode fractures reactivate during stimulation and enhance efficiency by widening the treatment zone. Knowledge of both the present-day maximum horizontal stress, which controls the direction of hydraulic fracture propagation, and the geometry of the natural fracture system, which we discuss here, is therefore necessary for effective hydraulic fracture treatment design. We characterized natural fractures in four Barnett Shale cores in terms of orientation, size, and sealing properties. We measured a mechanical rock property, the subcritical crack index, which governs fracture pattern development. Natural fractures are common, narrow (0.05 mm; 0.002 in.), sealed with calcite, and present in en echelon arrays. Individual fractures have high length/width aspect ratios (1000:1). They are steep (75), and the dominant trend is west-northwest. Other sets trend north-south. The narrow fractures are sealed and cannot contribute to reservoir storage or enhance permeability, but the population may follow a power-law size distribution where the largest fractures are open. The subcritical crack index for the Barnett Shale is high, indicating fracture clustering, and we suggest that large open fractures exist in clusters spaced several hundred feet apart. These fracture clusters may enhance permeability locally, but they may be problematic for hydraulic fracture treatments. The smaller sealed fractures act as planes of weakness and reactivate during hydraulic fracture treatments. Because the maximum horizontal stress trends northeast-southwest and is nearly normal to the dominant natural fractures, reactivation widens the treatment zone along multiple strands.

954 citations

Journal ArticleDOI
TL;DR: In this article, mineback experiments and laboratory tests and analyses of these data are integrated to describe this complex fracture behavior, which can occur by arresting the growth of the fracture, increasing fluid leakoff, hindering proppant transport, and enhancing the creation of multiple fractures.
Abstract: Geologic discontinuities, such as joints, faults, and bedding planes, can significantly affect the overall geometry of hydraulic fractures. This can occur by arresting the growth of the fracture, increasing fluid leakoff, hindering proppant transport, and enhancing the creation of multiple fractures. Results from mineback experiments and laboratory tests and analyses of these data are integrated to describe this complex fracture behavior.

718 citations