scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Thousandfold Change in Resistivity in Magnetoresistive La-Ca-Mn-O Films

15 Apr 1994-Science (American Association for the Advancement of Science)-Vol. 264, Iss: 5157, pp 413-415
TL;DR: A negative isotropic magnetoresistance effect has been observed in thin oxide films of perovskite-like La0.67Ca0.33MnOx, which could be useful for various magnetic and electric device applications if the observed effects of material processing are optimized.
Abstract: A negative isotropic magnetoresistance effect more than three orders of magnitude larger than the typical giant magnetoresistance of some superlattice films has been observed in thin oxide films of perovskite-like La0.67Ca0.33MnOx. Epitaxial films that are grown on LaAIO3 substrates by laser ablation and suitably heat treated exhibit magnetoresistance values as high as 127,000 percent near 77 kelvin and ∼1300 percent near room temperature. Such a phenomenon could be useful for various magnetic and electric device applications if the observed effects of material processing are optimized. Possible mechanisms for the observed effect are discussed.
Citations
More filters
Journal ArticleDOI
TL;DR: The dynamical mean field theory of strongly correlated electron systems is based on a mapping of lattice models onto quantum impurity models subject to a self-consistency condition.
Abstract: We review the dynamical mean-field theory of strongly correlated electron systems which is based on a mapping of lattice models onto quantum impurity models subject to a self-consistency condition. This mapping is exact for models of correlated electrons in the limit of large lattice coordination (or infinite spatial dimensions). It extends the standard mean-field construction from classical statistical mechanics to quantum problems. We discuss the physical ideas underlying this theory and its mathematical derivation. Various analytic and numerical techniques that have been developed recently in order to analyze and solve the dynamical mean-field equations are reviewed and compared to each other. The method can be used for the determination of phase diagrams (by comparing the stability of various types of long-range order), and the calculation of thermodynamic properties, one-particle Green's functions, and response functions. We review in detail the recent progress in understanding the Hubbard model and the Mott metal-insulator transition within this approach, including some comparison to experiments on three-dimensional transition-metal oxides. We present an overview of the rapidly developing field of applications of this method to other systems. The present limitations of the approach, and possible extensions of the formalism are finally discussed. Computer programs for the numerical implementation of this method are also provided with this article.

5,230 citations

Journal ArticleDOI
TL;DR: In this paper, the fundamental physics behind the scarcity of ferromagnetic ferroelectric coexistence was explored and the properties of known magnetically ordered ferro-electric materials were examined.
Abstract: Multiferroic magnetoelectrics are materials that are both ferromagnetic and ferroelectric in the same phase. As a result, they have a spontaneous magnetization that can be switched by an applied magnetic field, a spontaneous polarization that can be switched by an applied electric field, and often some coupling between the two. Very few exist in nature or have been synthesized in the laboratory. In this paper, we explore the fundamental physics behind the scarcity of ferromagnetic ferroelectric coexistence. In addition, we examine the properties of some known magnetically ordered ferroelectric materials. We find that, in general, the transition metal d electrons, which are essential for magnetism, reduce the tendency for off-center ferroelectric distortion. Consequently, an additional electronic or structural driving force must be present for ferromagnetism and ferroelectricity to occur simultaneously.

3,146 citations

Journal ArticleDOI
TL;DR: In this paper, a large variety of experiments reviewed in detail here contain results compatible with the theoretical predictions, including phase diagrams of manganite models, the stabilization of the charge/orbital/spin ordered half-doped correlated electronics (CE)-states, the importance of the naively small Heisenberg coupling among localized spins, the setup of accurate mean-field approximations, and the existence of a new temperature scale T∗ where clusters start forming above the Curie temperature, the presence of stripes in the system, and many others.

2,927 citations


Cites background from "Thousandfold Change in Resistivity ..."

  • ...In the work of Jin et al. (1994), ¹ was suppressed by substrate-induced strain, and, as a consequence, the was much higher immediately above the transition than in crystals since the system was still in the insulating state, inducing an enormous change in resistivity....

    [...]

  • ...R(H))/R(H), where R(0) and R(H) are the resistances without and with a magnetic "eld H, respectively, and expressing the result as a percentage (i.e., multiplying by an additional factor 100) it has been shown thatMR ratios as large as 127,000% near 77 K can be obtained (Jin et al., 1994)....

    [...]

  • ...2.2.1 contribute to the understanding, at least in part, of the CMR e!ect found in thin "lms of this same compound (Jin et al., 1994)....

    [...]

Journal ArticleDOI
10 Jun 1999-Nature
TL;DR: In this article, it was shown that the magnetoresistive response increases dramatically when the Curie temperature (T C) is reduced, and that the massive magnetoresistance in low-T C systems can be explained by percolative transport through the ferromagnetic domains; this depends sensitively on the relative spin orientation of adjacent magnetoric domains which can be controlled by applied magnetic fields.
Abstract: Colossal magnetoresistance1—an unusually large change of resistivity observed in certain materials following application of magnetic field—has been extensively researched in ferromagnetic perovskite manganites. But it remains unclear why the magnetoresistive response increases dramatically when the Curie temperature (T C) is reduced. In these materials, T C varies sensitively with changing chemical pressure; this can be achieved by introducing trivalent rare-earth ions of differing size into the perovskite structure2,3,4, without affecting the valency of the Mn ions. The chemical pressure modifies local structural parameters such as the Mn–O bond distance and Mn–O–Mn bond angle, which directly influence the case of electron hopping between Mn ions (that is, the electronic bandwidth). But these effects cannot satisfactorily explain the dependence of magnetoresistance on T C. Here we demonstrate, using electron microscopy data, that the prototypical (La,Pr,Ca)MnO3 system is electronically phase-separated into a sub-micrometre-scale mixture of insulating regions (with a particular type of charge-ordering) and metallic, ferromagnetic domains. We find that the colossal magnetoresistive effect in low-T C systems can be explained by percolative transport through the ferromagnetic domains; this depends sensitively on the relative spin orientation of adjacent ferromagnetic domains which can be controlled by applied magnetic fields.

1,417 citations

Journal ArticleDOI
01 Sep 1997
TL;DR: In this paper, the authors review recent experimental work falling under the broad classification of colossal magnetoresistance (CMR), which is magnetoreduction associated with a ferromagnetic-toparamagnetic phase transition.
Abstract: We review recent experimental work falling under the broad classification of colossal magnetoresistance (CMR), which is magnetoresistance associated with a ferromagnetic-toparamagnetic phase transition. The prototypical CMR compound is derived from the parent compound, perovskite LaMnO 3. When hole doped at a concentration of 20–40% holes/Mn ion, for instance by Ca or Sr substitution for La, the material displays a transition from a high-temperature paramagnetic insulator to a low-temperature ferromagnetic metal. Near the phase transition temperature, which can exceed room temperature in some compositions, large magnetoresistance is observed and its possible application in magnetic recording has revived interest in these materials. In addition, unusual magneto-elastic effects and charge ordering have focused attention on strong electron–phonon coupling. This coupling, which is a type of dynamic extended-system version of the Jahn–Teller effect, in conjunction with the double-exchange interaction, is also viewed as essential for a microscopic description of CMR in the manganite perovskites. Large magnetoresistance is also seen in other systems, namely Tl 2Mn2O7 and some Cr chalcogenide spinels, compounds which differ greatly from the manganite perovskites. We describe the relevant points of contrast between the various CMR materials.

1,336 citations

References
More filters
Journal ArticleDOI
TL;DR: This work ascribes this giant magnetoresistance of (001)Fe/(001)Cr superlattices prepared by molecularbeam epitaxy to spin-dependent transmission of the conduction electrons between Fe layers through Cr layers.
Abstract: We have studied the magnetoresistance of (001)Fe/(001)Cr superlattices prepared by molecularbeam epitaxy. A huge magnetoresistance is found in superlattices with thin Cr layers: For example, with ${t}_{\mathrm{Cr}}=9$ \AA{}, at $T=4.2$ K, the resistivity is lowered by almost a factor of 2 in a magnetic field of 2 T. We ascribe this giant magnetoresistance to spin-dependent transmission of the conduction electrons between Fe layers through Cr layers.

7,993 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown that both electrical conduction and ferromagnetic coupling in these compounds arise from a double exchange process, and a quantitative relation was developed between electrical conductivity and the Ferromagnetic Curie temperature.
Abstract: Recently, Jonker and Van Santen have found an empirical correlation between electrical conduction and ferromagnetism in certain compounds of manganese with perovskite structure. This observed correlation is herein interpreted in terms of those principles governing the interaction of the $d$-shells of the transition metals which were enunciated in the first paper of this series. Both electrical conduction and ferromagnetic coupling in these compounds are found to arise from a double exchange process, and a quantitative relation is developed between electrical conductivity and the ferromagnetic Curie temperature.

5,097 citations

Journal ArticleDOI
TL;DR: The samples show a drop in the resistivity at the magnetic transition, and the existence of magnetic polarons seems to dominate the electric transport in this region.
Abstract: At room temperature a large magnetoresistance, \ensuremath{\Delta}R/R(H=0), of 60% has been observed in thin magnetic films of perovskitelike La-Ba-Mn-O. The films were grown epitaxially on ${\mathrm{SrTiO}}_{3}$ substrates by off-axis laser deposition. In the as-deposited state, the Curie temperature and the saturation magnetization were considerably lower compared to bulk samples, but were increased by a subsequent heat treatment. The samples show a drop in the resistivity at the magnetic transition, and the existence of magnetic polarons seems to dominate the electric transport in this region.

3,424 citations

Journal ArticleDOI
TL;DR: In this article, it was shown that mobile electrons always give rise to a distortion of the ground state spin arrangement, since electron transfer lowers the energy by a term of first order in the distortion angles.
Abstract: This paper discusses some effects of mobile electrons in some antiferromagnetic lattices. It is shown that these electrons (or holes) always give rise to a distortion of the ground state spin arrangement, since electron transfer lowers the energy by a term of first order in the distortion angles. In the most typical cases this results in: (a) a nonzero spontaneous moment in low fields; (b) a lack of saturation in high fields; (c) simultaneous occurrence of "ferromagnetic" and "antiferromagnetic" lines in neutron diffraction patterns; (d) both ferromagnetic and antiferromagnetic branches in the spin wave spectra. Some of these properties have indeed been observed in compounds of mixed valency such as the manganites with low ${\mathrm{Mn}}^{4+}$ content. Similar considerations apply at finite temperatures, at least for the (most widespread) case where only the bottom of the carrier band is occupied at all temperatures of interest. The free energy is computed by a variational procedure, using simple carrier wave functions and an extension of the molecular field approximation. It is found that the canted arrangements are stable up to a well-defined temperature ${T}_{1}$. Above ${T}_{1}$ the system is either antiferromagnetic or ferromagnetic, depending upon the relative amount of mobile electrons. This behavior is not qualitatively modified when the carriers which are responsible for double exchange fall into bound states around impurity ions of opposite charge. Such bound states, however, will give rise to local inhomogeneities in the spin distortion, and to diffuse magnetic peaks in the neutron diffraction pattern. The possibility of observing these peaks and of eliminating the spurious spin-wave scattering is discussed in an Appendix.

2,073 citations

Journal ArticleDOI
TL;DR: On montre que la resistance magnetique dans le plan, des sandwiches de couches ferromagnetiques non couplees separees par des couches metalliques ultrafines non magnetiques (Cu, Ag, Au, Au), est fortement accrue lorsque les aimantations des deux couchettes sont antiparalleles.
Abstract: We show that the in-plane magnetoresistance of sandwiches of uncoupled ferromagnetic (${\mathrm{Ni}}_{81}$${\mathrm{Fe}}_{19}$,${\mathrm{Ni}}_{80}$${\mathrm{Co}}_{20}$,Ni) layers separated by ultrathin nonmagnetic metallic (Cu,Ag,Au) layers is strongly increased when the magnetizations of the two ferromagnetic layers are aligned antiparallel. Using NiFe layers, we report a relative change of resistance of 5.0% in 10 Oe at room temperature. The comparison between different ferromagnetic materials (alloys or pure elements) leads us to emphasize the role of bulk rather than interfacial spin-dependent scattering in these structures, in contrast to Fe/Cr multilayers.

1,690 citations