scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes

01 May 2011-Nature Nanotechnology (Nature Publishing Group)-Vol. 6, Iss: 5, pp 277-281
TL;DR: This work demonstrates very large battery charge and discharge rates with minimal capacity loss by using cathodes made from a self-assembled three-dimensional bicontinuous nanoarchitecture consisting of an electrolytically active material sandwiched between rapid ion and electron transport pathways.
Abstract: Rapid charge and discharge rates have become an important feature of electrical energy storage devices, but cause dramatic reductions in the energy that can be stored or delivered by most rechargeable batteries (their energy capacity). Supercapacitors do not suffer from this problem, but are restricted to much lower stored energy per mass (energy density) than batteries. A storage technology that combines the rate performance of supercapacitors with the energy density of batteries would significantly advance portable and distributed power technology. Here, we demonstrate very large battery charge and discharge rates with minimal capacity loss by using cathodes made from a self-assembled three-dimensional bicontinuous nanoarchitecture consisting of an electrolytically active material sandwiched between rapid ion and electron transport pathways. Rates of up to 400C and 1,000C for lithium-ion and nickel-metal hydride chemistries, respectively, are achieved (where a 1C rate represents a one-hour complete charge or discharge), enabling fabrication of a lithium-ion battery that can be 90% charged in 2 minutes.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
16 Mar 2012-Science
TL;DR: It is shown that graphite oxide sheets can be converted by infrared laser irradiation into porous graphene sheets that are flexible, robust, and highly conductive, and hold promise for high-power, flexible electronics.
Abstract: Although electrochemical capacitors (ECs), also known as supercapacitors or ultracapacitors, charge and discharge faster than batteries, they are still limited by low energy densities and slow rate capabilities. We used a standard LightScribe DVD optical drive to do the direct laser reduction of graphite oxide films to graphene. The produced films are mechanically robust, show high electrical conductivity (1738 siemens per meter) and specific surface area (1520 square meters per gram), and can thus be used directly as EC electrodes without the need for binders or current collectors, as is the case for conventional ECs. Devices made with these electrodes exhibit ultrahigh energy density values in different electrolytes while maintaining the high power density and excellent cycle stability of ECs. Moreover, these ECs maintain excellent electrochemical attributes under high mechanical stress and thus hold promise for high-power, flexible electronics.

3,603 citations

Journal ArticleDOI
TL;DR: Recent advances in strategies for advanced metal oxide-based hybrid nanostructure design are reviewed, with the focus on the binder-free film/array electrodes that can provide larger electrochemically active surface area, faster electron transport and superior ion diffusion, thus leading to substantially improved cycling and rate performance.
Abstract: Metal oxide nanostructures are promising electrode materials for lithium-ion batteries and supercapacitors because of their high specific capacity/capacitance, typically 2-3 times higher than that of the carbon/graphite-based materials. However, their cycling stability and rate performance still can not meet the requirements of practical applications. It is therefore urgent to improve their overall device performance, which depends on not only the development of advanced electrode materials but also in a large part "how to design superior electrode architectures". In the article, we will review recent advances in strategies for advanced metal oxide-based hybrid nanostructure design, with the focus on the binder-free film/array electrodes. These binder-free electrodes, with the integration of unique merits of each component, can provide larger electrochemically active surface area, faster electron transport and superior ion diffusion, thus leading to substantially improved cycling and rate performance. Several recently emerged concepts of using ordered nanostructure arrays, synergetic core-shell structures, nanostructured current collectors, and flexible paper/textile electrodes will be highlighted, pointing out advantages and challenges where appropriate. Some future electrode design trends and directions are also discussed.

2,176 citations

Journal ArticleDOI
TL;DR: A supercapacitor electrode composed of well-aligned CoO nanowire array grown on 3D nickel foam with polypyrrole (PPy) uniformly immobilized onto or firmly anchored to each nanowires surface to boost the pseudocapacitive performance.
Abstract: We have developed a supercapacitor electrode composed of well-aligned CoO nanowire array grown on 3D nickel foam with polypyrrole (PPy) uniformly immobilized onto or firmly anchored to each nanowire surface to boost the pseudocapacitive performance. The electrode architecture takes advantage of the high electrochemical activity from both the CoO and PPy, the high electronic conductivity of PPy, and the short ion diffusion pathway in ordered mesoporous nanowires. These merits together with the elegant synergy between CoO and PPy lead to a high specific capacitance of 2223 F g–1 approaching the theoretical value, good rate capability, and cycling stability (99.8% capacitance retention after 2000 cycles). An aqueous asymmetric supercapacitor device with a maximum voltage of 1.8 V fabricated by using our hybrid array as the positive electrode and activated carbon film as the negative electrode has demonstrated high energy density (∼43.5 Wh kg–1), high power density (∼5500 W kg–1 at 11.8 Wh kg–1) and outstandi...

1,220 citations

Journal ArticleDOI
TL;DR: This review describes the most recent advances in flexible energy-storage devices, including flexible lithium-ion batteries and flexible supercapacitors, based on carbon materials and a number of composites and flexible micro-supercapacitor.
Abstract: Flexible energy-storage devices are attracting increasing attention as they show unique promising advantages, such as flexibility, shape diversity, light weight, and so on; these properties enable applications in portable, flexible, and even wearable electronic devices, including soft electronic products, roll-up displays, and wearable devices. Consequently, considerable effort has been made in recent years to fulfill the requirements of future flexible energy-storage devices, and much progress has been witnessed. This review describes the most recent advances in flexible energy-storage devices, including flexible lithium-ion batteries and flexible supercapacitors. The latest successful examples in flexible lithium-ion batteries and their technological innovations and challenges are reviewed first. This is followed by a detailed overview of the recent progress in flexible supercapacitors based on carbon materials and a number of composites and flexible micro-supercapacitors. Some of the latest achievements regarding interesting integrated energy-storage systems are also reviewed. Further research direction is also proposed to surpass existing technological bottle-necks and realize idealized flexible energy-storage devices.

1,107 citations

Journal ArticleDOI
TL;DR: 3D interdigitated microbattery architectures fabricated by printing concentrated lithium oxide-based inks exhibit high areal energy and power densities, which may find potential application in autonomously powered microdevices.
Abstract: 3D interdigitated microbattery architectures (3D-IMA) are fabricated by printing concentrated lithium oxide-based inks. The microbatteries are composed of interdigitated, high-aspect ratio cathode and anode structures. Our 3D-IMA, which exhibit high areal energy and power densities, may find potential application in autonomously powered microdevices.

1,094 citations

References
More filters
Journal ArticleDOI
TL;DR: This review describes some recent developments in the discovery of nanoelectrolytes and nanoeLECTrodes for lithium batteries, fuel cells and supercapacitors and the advantages and disadvantages of the nanoscale in materials design for such devices.
Abstract: New materials hold the key to fundamental advances in energy conversion and storage, both of which are vital in order to meet the challenge of global warming and the finite nature of fossil fuels. Nanomaterials in particular offer unique properties or combinations of properties as electrodes and electrolytes in a range of energy devices. This review describes some recent developments in the discovery of nanoelectrolytes and nanoelectrodes for lithium batteries, fuel cells and supercapacitors. The advantages and disadvantages of the nanoscale in materials design for such devices are highlighted.

8,157 citations

Journal ArticleDOI
TL;DR: Some of the recent scientific advances in nanomaterials, and especially in nanostructured materials, for rechargeable lithium-ion batteries are reviewed.
Abstract: Energy storage is more important today than at any time in human history. Future generations of rechargeable lithium batteries are required to power portable electronic devices (cellphones, laptop computers etc.), store electricity from renewable sources, and as a vital component in new hybrid electric vehicles. To achieve the increase in energy and power density essential to meet the future challenges of energy storage, new materials chemistry, and especially new nanomaterials chemistry, is essential. We must find ways of synthesizing new nanomaterials with new properties or combinations of properties, for use as electrodes and electrolytes in lithium batteries. Herein we review some of the recent scientific advances in nanomaterials, and especially in nanostructured materials, for rechargeable lithium-ion batteries.

5,441 citations

Journal ArticleDOI
12 Mar 2009-Nature
TL;DR: It is shown that batteries which obtain high energy density by storing charge in the bulk of a material can also achieve ultrahigh discharge rates, comparable to those of supercapacitors.
Abstract: The storage of electrical energy at high charge and discharge rate is an important technology in today's society, and can enable hybrid and plug-in hybrid electric vehicles and provide back-up for wind and solar energy. It is typically believed that in electrochemical systems very high power rates can only be achieved with supercapacitors, which trade high power for low energy density as they only store energy by surface adsorption reactions of charged species on an electrode material. Here we show that batteries which obtain high energy density by storing charge in the bulk of a material can also achieve ultrahigh discharge rates, comparable to those of supercapacitors. We realize this in LiFePO(4) (ref. 6), a material with high lithium bulk mobility, by creating a fast ion-conducting surface phase through controlled off-stoichiometry. A rate capability equivalent to full battery discharge in 10-20 s can be achieved.

3,187 citations

Journal ArticleDOI
TL;DR: It is shown that controlled cation non-stoichiometry combined with solid-solution doping by metals supervalent to Li+ increases the electronic conductivity of LiFePO4 by a factor of ∼108, which may allow development of lithium batteries with the highest power density yet.
Abstract: Lithium transition metal phosphates have become of great interest as storage cathodes for rechargeable lithium batteries because of their high energy density, low raw materials cost, environmental friendliness and safety. Their key limitation has been extremely low electronic conductivity, until now believed to be intrinsic to this family of compounds. Here we show that controlled cation non-stoichiometry combined with solid-solution doping by metals supervalent to Li+ increases the electronic conductivity of LiFePO4 by a factor of approximately 10(8). The resulting materials show near-theoretical energy density at low charge/discharge rates, and retain significant capacity with little polarization at rates as high as 6,000 mA x g(-1). In a conventional cell design, they may allow development of lithium batteries with the highest power density yet.

2,707 citations

Journal ArticleDOI
17 Feb 2006-Science
TL;DR: By modifying its crystal structure, lithium nickel manganese oxide is obtained unexpectedly high rate-capability, considerably better than lithium cobalt oxide (LiCoO2), the current battery electrode material of choice.
Abstract: New applications such as hybrid electric vehicles and power backup require rechargeable batteries that combine high energy density with high charge and discharge rate capability. Using ab initio computational modeling, we identified useful strategies to design higher rate battery electrodes and tested them on lithium nickel manganese oxide [Li(Ni 0.5 Mn 0.5 )O 2 ], a safe, inexpensive material that has been thought to have poor intrinsic rate capability. By modifying its crystal structure, we obtained unexpectedly high rate-capability, considerably better than lithium cobalt oxide (LiCoO 2 ), the current battery electrode material of choice.

2,310 citations