scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Three-Dimensional Simulation of Flow Past a Circular Cylinder by Nonlinear Turbulence Model

19 May 2008-Numerical Heat Transfer Part A-applications (Taylor & Francis Group)-Vol. 54, Iss: 2, pp 221-234
TL;DR: In this paper, a nonlinear turbulence model based on the k-e formulation is used to achieve the turbulent closure of flow past a circular cylinder at subcritical Reynolds number Re = 3,900 is performed using three-dimensional, unsteady, Reynolds-Averaged Navier-Stokes (URANS) equations.
Abstract: Numerical simulation of flow past a circular cylinder at sub-critical Reynolds number Re = 3,900 is performed using three-dimensional, unsteady, Reynolds–Averaged Navier-Stokes (URANS) equations. A nonlinear turbulence model based on the k–e formulation is used to achieve the turbulent closure. The results obtained by the simulations are compared with experimental and previously reported numerical results. The grid used for the present simulation is reasonable, and the accuracy obtained is good considering the computational cost involved in carrying out large-eddy simulations (LES) for the same test case. The test flow is also simulated using standard k–e model, and the results obtained by the nonlinear k–e model are found to be better.
Citations
More filters
Journal ArticleDOI

[...]

TL;DR: A comprehensive survey of the literature in the area of numerical heat transfer (NHT) published between 2000 and 2009 has been conducted by as mentioned in this paper, where the authors conducted a comprehensive survey.
Abstract: A comprehensive survey of the literature in the area of numerical heat transfer (NHT) published between 2000 and 2009 has been conducted Due to the immenseness of the literature volume, the survey

58 citations

Journal ArticleDOI

[...]

TL;DR: In this article, the authors employed partially-averaged Navier-Stokes (PANS) equations to simulate the flow around a smooth circular cylinder at Reynolds number 3900 and evaluated the importance of discretization and modelling errors on the accuracy of this mathematical model.
Abstract: This study employs Partially-Averaged Navier-Stokes (PANS) equations to simulate the flow around a smooth circular cylinder at Reynolds number 3900. It intends to evaluate the importance of discretization and modelling errors on the accuracy of this mathematical model. Furthermore, the study addresses the effect of the physical resolution, or fraction of turbulence kinetic energy being modelled fk, on the predictions accuracy. To this end, Validation exercises are carried out using five different values of fk which range from typical values for well-resolved Scale-Resolving Simulations (fk ≤ 0.25) to Reynolds-Averaged Navier-Stokes equations ( f k = 1.00 ). Naturally, these exercises require the evaluation of numerical errors, i.e. Verification studies. Consequently, and taking advantage of the ability of PANS to enable the distinction between discretization and modelling errors, spatial and temporal grid refinement studies are carried out to assess the magnitude of the discretization error, as well as its dependence on fk. The outcome confirms the ability of PANS, in combination with fk f k = 1.00 . However, the reduction of fk tends to increase the model dependence on the spatial and temporal resolution. It is demonstrated that similarly to the effect of the spatial and temporal grid resolution on the magnitude of the numerical error, the modelling error diminishes with the physical resolution (fk → 0). The convergence of the predictions with fk is also illustrated.

47 citations

Journal ArticleDOI

[...]

TL;DR: In this paper, the macroscopic turbulence quantities for porous media were computed and analyzed for different Reynolds numbers as well as for different porosity levels, and the results showed that the spatial dispersion of the mean flow is the main contributor to this quantity at low porosities.
Abstract: In this study, fully developed macroscopic turbulence quantities—based on their definitions in some existing turbulence models for porous media as well as those based on definitions introduced in a recently developed model [F.E. Teruel, Rizwan-uddin, A new turbulence model for porous media flows. Part I: Constitutive equations and model closure, Int. J. Heat Mass Transfer (2009)]—are computed and analyzed for different Reynolds numbers as well as for different porosity levels. When computed based on the definition introduced in the new model, these numerically computed, pore-level turbulent quantities provide closure to the formulation. A large set of microscopic turbulent flow simulations of the REV of a porous medium, formed by staggered square cylinders, is carried out to achieve these tasks. For each Reynolds number selected, ten different porosities are simulated in the 5–95% range. The Reynolds number is varied from Re = 103 to Re = 105, covering four different cases of the turbulence flow regime. Numerical results obtained for the macroscopic turbulent kinetic energy based on the new definition show that the spatial dispersion of the mean flow is the main contributor to this quantity at low porosities. Additionally, it is found that for high porosities, the spatial average of the turbulent kinetic energy is the main contributor but the spatial dispersion of the mean flow cannot be neglected. The new definition of the macroscopic dissipation rate is found to asymptotically approach the volume average of this quantity at high Reynolds numbers. It is confirmed that microscopic numerical simulations are consistent with the macroscopic law that states that the macroscopic dissipation rate is determined by the pressure-drop through the REV.

20 citations

Journal ArticleDOI

[...]

TL;DR: In this paper, the effect of angle of attack over flow structure, force coefficients and wall related flow variables are discussed in detail, and the non-linear k-e turbulence model is validated against DARPA Suboff axisymmetric hull.
Abstract: This paper addresses the Computational Fluid Dynamics Approach (CFD) to simulate the flow over underwater axisymmetric bodies at higher angle of attacks. Three Dimensional (3D) flow simulation is carried out over MAYA Autonomous Underwater Vehicle (AUV) at a Reynolds number (Re) of 2.09×10 6 . These 3D flows are complex due to cross flow interaction with hull which produces nonlinearity in the flow. Cross flow interaction between pressure side and suction side is studied in the presence of angle of attack. For the present study standard k-e model, non-linear k-e model models of turbulence are used for solving the Reynolds Averaged Navier-Stokes Equation (RANS). The non-linear k-e turbulence model is validated against DARPA Suboff axisymmetric hull and its applicability for flow simulation over underwater axisymmetric hull is examined. The non-linear k-e model performs well in 3D complex turbulent flows with flow separation and flow reattachment. The effect of angle of attack over flow structure, force coefficients and wall related flow variables are discussed in detail. Keywords: Computational Fluid Dynamics (CFD); Autonomous Underwater Vehicle (AUV); Reynolds averaged Navier-Stokes Equation (RANS); non-linear k-e turbulence model doi: http://dx.doi.org/10.3329/jname.v8i2.6984 Journal of Naval Architecture and Marine Engineering 8(2011) 149-163

18 citations


Cites methods from "Three-Dimensional Simulation of Flo..."

  • [...]

Journal ArticleDOI

[...]

TL;DR: In this article, a numerical investigation of low-Reynolds number flows with thermal effect around the MAV airfoils using various turbulence models, including an algebraic Baldwin-Lomax model, Spalart-Allmaras one equation, and two equation (k-ω and SST-kω) turbulence models were presented.
Abstract: A numerical investigation of low-Reynolds number flows with thermal effect around the MAV airfoils using various turbulence models, including an algebraic Baldwin-Lomax model, Spalart-Allmaras one equation, and two equation (k-ω and SST-k-ω) turbulence models, is presented. First, the thermal effect on the aerodynamic efficiency is studied for flow around a rectangular MAV wing, based on the NACA0012 airfoil section at low-aspect ratio (AR = 2) and an angle of attack equal to 0°. Second, details of the thermal effect are limited to the two-dimensional NACA0012 airfoil with chord length of 3.81 cm. This study shows that the improvement of aerodynamic efficiency (increase lift and reduce drag) is achieved by the generation of a temperature difference between extrados and intrados of the airfoil (by cooling the upper surface and heating the lower surface). The numerical results obtained with various turbulence models are in good agreement with experiment data, except the k-ω turbulence model. These results a...

13 citations

References
More filters

[...]

01 Nov 1992
TL;DR: Explicit algebraic stress models that are valid for three-dimensional turbulent flows in noninertial frames are systematically derived from a hierarchy of second-order closure models.
Abstract: Explicit algebraic stress models that are valid for three-dimensional turbulent flows in noninertial frames are systematically derived from a hierarchy of second-order closure models. This represents a generalization of the model derived by Pope who based his analysis on the Launder, Reece, and Rodi model restricted to two-dimensional turbulent flows in an inertial frame. The relationship between the new models and traditional algebraic stress models -- as well as anistropic eddy visosity models -- is theoretically established. The need for regularization is demonstrated in an effort to explain why traditional algebraic stress models have failed in complex flows. It is also shown that these explicit algebraic stress models can shed new light on what second-order closure models predict for the equilibrium states of homogeneous turbulent flows and can serve as a useful alternative in practical computations.

784 citations

Journal ArticleDOI

[...]

TL;DR: Explicit algebraic stress models that are valid for three-dimensional turbulent flows in noninertial frames are systematically derived from a hierarchy of second-order closure models as discussed by the authors.
Abstract: Explicit algebraic stress models that are valid for three-dimensional turbulent flows in noninertial frames are systematically derived from a hierarchy of second-order closure models. This represents a generalization of the model derived by Pope who based his analysis on the Launder, Reece, and Rodi model restricted to two-dimensional turbulent flows in an inertial frame. The relationship between the new models and traditional algebraic stress models -- as well as anistropic eddy visosity models -- is theoretically established. The need for regularization is demonstrated in an effort to explain why traditional algebraic stress models have failed in complex flows. It is also shown that these explicit algebraic stress models can shed new light on what second-order closure models predict for the equilibrium states of homogeneous turbulent flows and can serve as a useful alternative in practical computations.

735 citations

Journal ArticleDOI

[...]

TL;DR: In this paper, a global numerical stability analysis of the periodic wake of a circular cylinder for Reynolds numbers between 140 and 300 is presented, showing that the two-dimensional wake becomes (absolutely) linearly unstable to three-dimensional perturbations at a critical Reynolds number of 1885±10.
Abstract: Results are reported from a highly accurate, global numerical stability analysis of the periodic wake of a circular cylinder for Reynolds numbers between 140 and 300 The analysis shows that the two-dimensional wake becomes (absolutely) linearly unstable to three-dimensional perturbations at a critical Reynolds number of 1885±10 The critical spanwise wavelength is 396 ± 002 diameters and the critical Floquet mode corresponds to a ‘Mode A’ instability At Reynolds number 259 the two-dimensional wake becomes linearly unstable to a second branch of modes with wavelength 0822 diameters at onset Stability spectra and corresponding neutral stability curves are presented for Reynolds numbers up to 300

716 citations


"Three-Dimensional Simulation of Flo..." refers methods in this paper

  • [...]

  • [...]

Journal ArticleDOI

[...]

TL;DR: In this paper, a high-order accurate numerical method based on B-splines and compared with previous upwindbiased and central finite-difference simulations and with the existing experimental data is presented.
Abstract: Flow over a circular cylinder at Reynolds number 3900 is studied numerically using the technique of large eddy simulation. The computations are carried out with a high-order accurate numerical method based on B-splines and compared with previous upwind-biased and central finite-difference simulations and with the existing experimental data. In the very near wake, all three simulations are in agreement with each other. Farther downstream, the results of the B-spline computations are in better agreement with the hot-wire experiment of Ong and Wallace [Exp. Fluids 20, 441–453 (1996)] than those obtained in the finite-difference simulations. In particular, the power spectra of velocity fluctuations are in excellent agreement with the experimental data. The impact of numerical resolution on the shear layer transition is investigated.

573 citations


"Three-Dimensional Simulation of Flo..." refers methods in this paper

  • [...]

  • [...]

  • [...]

Journal ArticleDOI

[...]

TL;DR: In this article, a cubic relation between the strain and vorticity tensor and the stress tensor was proposed, which does much better than a conventional eddy-viscosity scheme in capturing effects of streamline curvature over a range of flows.
Abstract: Many quadratic stress-strain relations have been proposed in recent years to extend the applicability of linear eddy-viscosity models at modest computational cost However, comparison shows that none achieves much greater width of applicability This paper, therefore, proposes a cubic relation between the strain and vorticity tensor and the stress tensor, which does much better than a conventional eddy-viscosity scheme in capturing effects of streamline curvature over a range of flows The flows considered range from simple shear at high strain rates and pipe flow, to flows involving strong streamline curvature and stagnation

544 citations


"Three-Dimensional Simulation of Flo..." refers background in this paper

  • [...]