scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Ti based biomaterials, the ultimate choice for orthopaedic implants – A review

TL;DR: In this paper, the influence of alloy chemistry, thermomechanical processing and surface condition on these properties is discussed and various surface modification techniques to achieve superior biocompatibility, higher wear and corrosion resistance.
About: This article is published in Progress in Materials Science.The article was published on 2009-05-01. It has received 4113 citations till now. The article focuses on the topics: Biomaterial.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the results of using selective laser melting (SLM) to produce CP-Ti parts starting from powder with a wide grain size range up to 100μm were presented.
Abstract: Commercially pure titanium (CP-Ti) has received a great deal of attention in medical applications. Improvement of its mechanical properties plays a key role in enhancing the biomechanical compatibility of Ti implants, leading to avoid revision surgeries. Emerging advanced manufacturing technologies such as selective laser melting (SLM) is providing an ideal platform for producing components with almost no geometric constraints and is economically feasible down to a batch size of one. This study presents the results of using SLM to produce CP-Ti parts starting from powder with a wide grain size range up to 100 μm. Accurate manipulation of SLM manufacturing parameters were applied to produce nearly full dense (>99.5%) CP-Ti parts without any post-treatments. Compared with the properties of those manufactured by traditional processing technologies, the microhardness, compressive, and tensile strengths of SLM-processed CP-Ti parts have been improved to 261 Hv, 1136 MPa, and 757 MPa, respectively, due to the formation of refined martensitic α′ grains during SLM. The optimal manufacturing parameters could enhance the strength and hardness of CP-Ti and yet maintaining the ductility of titanium. Fractography study of the tensile-failed SLM-processed specimens showed that incompletely melted particles and porosities caused early fracture in porous sample. Mixture of dimples and minor quasi-cleavage facets covered most fracture surface of full dense sample.

549 citations

Journal ArticleDOI
TL;DR: In this article, the authors reviewed the recent progresses in selective laser melting of titanium alloys and their composites for biomedical applications, especially developing new titanium powder for SLM, and extended attractive progresses in the SLM of all types of titanium, composites and porous structures including Ti-24Nb-4Zr-8Sn and Ti-TiB/TiC composites with focus on the manufacture by SLM and resulting unique microstructure and properties.
Abstract: Titanium materials are ideal targets for selective laser melting (SLM), because they are expensive and difficult to machinery using traditional technologies. After briefly introducing the SLM process and processing factors involved, this paper reviews the recent progresses in SLM of titanium alloys and their composites for biomedical applications, especially developing new titanium powder for SLM. Although the current feedstock titanium powder for SLM is limited to CP-Ti, Ti–6Al–4V, and Ti–6Al–7Nb, this review extends attractive progresses in the SLM of all types of titanium, composites, and porous structures including Ti–24Nb–4Zr–8Sn and Ti–TiB/TiC composites with focus on the manufacture by SLM and resulting unique microstructure and properties (mechanical, wear/corrosion resistance properties).

524 citations

Journal ArticleDOI
TL;DR: The metals Ti, Au, Sn, Ta, Nb, Ru and Zr are identified as candidates for the production of thoroughly biocompatible SMAs - alloys that exhibit the full range of shape memory abilities yet are also free of any undesirable side effects.

486 citations


Cites background from "Ti based biomaterials, the ultimate..."

  • ...6 GPa [8,51] and, while reports for NiTi are varied, the literature lists values of 48–55 GPa as the lower bound for Young’s moduli of bulk NiTi [7,52,53], which exceeds that of bone....

    [...]

  • ...Despite this, NiTi still exhibits a far lower Young’s modulus than the other common biomedical alloys (commercially pure (CP) Ti, Co–Cr, 316L stainless steel and Ti–6Al–4V) [52], further underlining the need for low-modulus alloys....

    [...]

Journal ArticleDOI
TL;DR: Their Applications Kesong Liu,†,∥ Moyuan Cao,† Akira Fujishima, and Lei Jiang*,†,‡ †Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry and Environment, Beihang University, Beijing 100191, PR.
Abstract: Their Applications Kesong Liu,†,∥ Moyuan Cao,† Akira Fujishima, and Lei Jiang*,†,‡ †Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry and Environment, Beihang University, Beijing 100191, PR China ‡Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China Research Institute for Science and Technology, Photocatalysis International Research Center, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan Institute for Superconducting and Electronic Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW 2500, Australia

470 citations

References
More filters
Journal ArticleDOI
Steven M. Kurtz1, Kevin L. Ong1, Edmund Lau1, Fionna Mowat1, Michael T. Halpern1 
TL;DR: These large projected increases in demand for total hip and knee arthroplasties provide a quantitative basis for future policy decisions related to the numbers of orthopaedic surgeons needed to perform these procedures and the deployment of appropriate resources to serve this need.
Abstract: Background: Over the past decade, there has been an increase in the number of revision total hip and knee arthroplasties performed in the United States. The purpose of this study was to formulate projections for the number of primary and revision total hip and knee arthroplasties that will be performed in the United States through 2030. Methods: The Nationwide Inpatient Sample (1990 to 2003) was used in conjunction with United States Census Bureau data to quantify primary and revision arthroplasty rates as a function of age, gender, race and/or ethnicity, and census region. Projections were performed with use of Poisson regression on historical procedure rates in combination with population projections from 2005 to 2030. Results: By 2030, the demand for primary total hip arthroplasties is estimated to grow by 174% to 572,000. The demand for primary total knee arthroplasties is projected to grow by 673% to 3.48 million procedures. The demand for hip revision procedures is projected to double by the year 2026, while the demand for knee revisions is expected to double by 2015. Although hip revisions are currently more frequently performed than knee revisions, the demand for knee revisions is expected to surpass the demand for hip revisions after 2007. Overall, total hip and total knee revisions are projected to grow by 137% and 601%, respectively, between 2005 and 2030. Conclusions: These large projected increases in demand for total hip and knee arthroplasties provide a quantitative basis for future policy decisions related to the numbers of orthopaedic surgeons needed to perform these procedures and the deployment of appropriate resources to serve this need.

7,032 citations

Journal ArticleDOI
Marc Long1, H.J Rack1
TL;DR: This review examines current information on the physical and mechanical characteristics of titanium alloys used in artifical joint replacement prostheses, with a special focus on those issues associated with the long-term prosthetic requirements, e.g., fatigue and wear.

3,039 citations

Journal ArticleDOI
TL;DR: A review of surface modification techniques for titanium and titanium alloys can be found in this article, where the authors have shown that the wear resistance, corrosion resistance, and biological properties can be improved selectively using the appropriate surface treatment techniques while the desirable bulk attributes of the materials are retained.
Abstract: Titanium and titanium alloys are widely used in biomedical devices and components, especially as hard tissue replacements as well as in cardiac and cardiovascular applications, because of their desirable properties, such as relatively low modulus, good fatigue strength, formability, machinability, corrosion resistance, and biocompatibility. However, titanium and its alloys cannot meet all of the clinical requirements. Therefore, in order to improve the biological, chemical, and mechanical properties, surface modification is often performed. This article reviews the various surface modification technologies pertaining to titanium and titanium alloys including mechanical treatment, thermal spraying, sol–gel, chemical and electrochemical treatment, and ion implantation from the perspective of biomedical engineering. Recent work has shown that the wear resistance, corrosion resistance, and biological properties of titanium and titanium alloys can be improved selectively using the appropriate surface treatment techniques while the desirable bulk attributes of the materials are retained. The proper surface treatment expands the use of titanium and titanium alloys in the biomedical fields. Some of the recent applications are also discussed in this paper.

3,019 citations

Book
01 Aug 1991
TL;DR: In this article, the technology and evaluation of Corrosion is presented, with a focus on the effects of Metallurgical Structure on Corrosions, and a discussion of materials selection and design.
Abstract: 1. The Technology and Evaluation of Corrosion. 2. Electrochemical Thermodynamics and Electrode Potential. 3. Electrochemical Kinetics of Corrosion. 4. Passivity. 5. Polarization Methods to Measure Corrosion Rate. 6. Galvanic and Concentration Cell Corrosion. 7. Pitting and Crevice Corrosion. 8. Environmentally Induced Cracking. 9. Effects of Metallurgical Structure on Corrosion. 10. Corrosion-Related Damage by Hydrogen, Erosion, and Wear. 11. Corrosion in Selected Corrosive Environments. 12. Atmospheric Corrosion and Elevated Temperature Oxidation. 13. Cathodic Protection. 14. Coatings and Inhibitors. 15. Materials Selection and Design. Index.

2,939 citations


"Ti based biomaterials, the ultimate..." refers background in this paper

  • ...Crevice corrosion is encountered beneath the heads of fixing screws made of 316L stainless steel and mechanically assisted crevice corrosion of modular total hip arthroplasty components has been associated with elevations in serum cobalt and urine chromium [72]....

    [...]

Journal ArticleDOI
TL;DR: It is shown that, in the vast majority of circumstances, the sole requirement for biocompatibility in a medical device intended for long-term contact with the tissues of the human body is that the material shall do no harm to those tissues, achieved through chemical and biological inertness.

2,219 citations