scispace - formally typeset
Open accessJournal ArticleDOI: 10.1073/PNAS.2014188118

TIA1 potentiates tau phase separation and promotes generation of toxic oligomeric tau.

02 Mar 2021-Proceedings of the National Academy of Sciences of the United States of America (National Academy of Sciences)-Vol. 118, Iss: 9
Abstract: Tau protein plays an important role in the biology of stress granules and in the stress response of neurons, but the nature of these biochemical interactions is not known. Here we show that the interaction of tau with RNA and the RNA binding protein TIA1 is sufficient to drive phase separation of tau at physiological concentrations, without the requirement for artificial crowding agents such as polyethylene glycol (PEG). We further show that phase separation of tau in the presence of RNA and TIA1 generates abundant tau oligomers. Prior studies indicate that recombinant tau readily forms oligomers and fibrils in vitro in the presence of polyanionic agents, including RNA, but the resulting tau aggregates are not particularly toxic. We discover that tau oligomers generated during copartitioning with TIA1 are significantly more toxic than tau aggregates generated by incubation with RNA alone or phase-separated tau complexes generated by incubation with artificial crowding agents. This pathway identifies a potentially important source for generation of toxic tau oligomers in tau-related neurodegenerative diseases. Our results also reveal a general principle that phase-separated RBP droplets provide a vehicle for coassortment of selected proteins. Tau selectively copartitions with TIA1 under physiological conditions, emphasizing the importance of TIA1 for tau biology. Other RBPs, such as G3BP1, are able to copartition with tau, but this happens only in the presence of crowding agents. This type of selective mixing might provide a basis through which membraneless organelles bring together functionally relevant proteins to promote particular biological activities.

... read more

Topics: Tau protein (58%)
Citations
  More

9 results found


Open accessJournal ArticleDOI: 10.1111/FEBS.16055
Juan Carlos Polanco1, Jürgen Götz1Institutions (1)
21 Jun 2021-FEBS Journal
Abstract: In Alzheimer's disease (AD), β-amyloid peptides aggregate to form amyloid plaques, and the microtubule-associated protein tau forms neurofibrillary tangles. However, severity and duration of AD correlate with the stereotypical emergence of tau tangles throughout the brain, suggestive of a gradual region-to-region spreading of pathological tau. The current notion in the field is that misfolded tau seeds propagate transsynaptically and corrupt the proper folding of soluble tau in recipient neurons. This is supported by accumulating evidence showing that in AD, functional connectivity and not proximity predicts the spreading of tau pathology. Tau seeds can be found in two flavors, vesicle-free, that is, naked as in oligomers and fibrils, or encapsulated by membranes of secreted vesicles known as exosomes. Both types of seeds have been shown to propagate between interconnected neurons. Here, we describe potential ways of how their propagation can be controlled in several subcellular compartments by manipulating mechanisms affecting production, neuron-to-neuron transmission, internalization, endosomal escape, and autophagy. We emphasize that although vesicle-free tau seeds and exosomes differ, they share the ability to trigger endolysosomal permeabilization. Such a mechanistic convergence in endolysosomal permeabilization presents itself as a unique opportunity to target both types of tau seeding. We discuss the cellular response to endolysosomal damage that might be key to control permeabilization, and the significant overlap in the seeding mechanism of proteopathic agents other than tau, which suggests that targeting the endolysosomal pathway could pave the way toward developing broad-spectrum treatments for neurodegenerative diseases.

... read more

Topics: Tau protein (55%)

5 Citations


Open accessJournal ArticleDOI: 10.3390/IJMS22105292
Abstract: The number of patients with neurodegenerative diseases (NDs) is increasing, along with the growing number of older adults. This escalation threatens to create a medical and social crisis. NDs include a large spectrum of heterogeneous and multifactorial pathologies, such as amyotrophic lateral sclerosis, frontotemporal dementia, Alzheimer’s disease, Parkinson’s disease, Huntington’s disease and multiple system atrophy, and the formation of inclusion bodies resulting from protein misfolding and aggregation is a hallmark of these disorders. The proteinaceous components of the pathological inclusions include several RNA-binding proteins (RBPs), which play important roles in splicing, stability, transcription and translation. In addition, RBPs were shown to play a critical role in regulating miRNA biogenesis and metabolism. The dysfunction of both RBPs and miRNAs is often observed in several NDs. Thus, the data about the interplay among RBPs and miRNAs and their cooperation in brain functions would be important to know for better understanding NDs and the development of effective therapeutics. In this review, we focused on the connection between miRNAs, RBPs and neurodegenerative diseases.

... read more

Topics: RNA-binding protein (58%)

4 Citations


Journal ArticleDOI: 10.1016/J.CELL.2021.07.003
19 Aug 2021-Cell
Abstract: Summary Frontotemporal dementia (FTD) because of MAPT mutation causes pathological accumulation of tau and glutamatergic cortical neuronal death by unknown mechanisms. We used human induced pluripotent stem cell (iPSC)-derived cerebral organoids expressing tau-V337M and isogenic corrected controls to discover early alterations because of the mutation that precede neurodegeneration. At 2 months, mutant organoids show upregulated expression of MAPT, glutamatergic signaling pathways, and regulators, including the RNA-binding protein ELAVL4, and increased stress granules. Over the following 4 months, mutant organoids accumulate splicing changes, disruption of autophagy function, and build-up of tau and P-tau-S396. By 6 months, tau-V337M organoids show specific loss of glutamatergic neurons as seen in individuals with FTD. Mutant neurons are susceptible to glutamate toxicity, which can be rescued pharmacologically by the PIKFYVE kinase inhibitor apilimod. Our results demonstrate a sequence of events that precede neurodegeneration, revealing molecular pathways associated with glutamate signaling as potential targets for therapeutic intervention in FTD.

... read more

Topics: Glutamatergic (55%), Neurodegeneration (53%), Synaptic signaling (52%) ... read more

3 Citations


Journal ArticleDOI: 10.1016/J.MOLCEL.2021.07.038
Lulu Jiang1, Weiwei Lin1, Cheng Zhang2, Peter E.A. Ash1  +22 moreInstitutions (5)
21 Oct 2021-Molecular Cell
Abstract: The microtubule-associated protein tau oligomerizes, but the actions of oligomeric tau (oTau) are unknown. We have used Cry2-based optogenetics to induce tau oligomers (oTau-c). Optical induction of oTau-c elicits tau phosphorylation, aggregation, and a translational stress response that includes stress granules and reduced protein synthesis. Proteomic analysis identifies HNRNPA2B1 as a principle target of oTau-c. The association of HNRNPA2B1 with endogenous oTau was verified in neurons, animal models, and human Alzheimer brain tissues. Mechanistic studies demonstrate that HNRNPA2B1 functions as a linker, connecting oTau with N6-methyladenosine (m6A) modified RNA transcripts. Knockdown of HNRNPA2B1 prevents oTau or oTau-c from associating with m6A or from reducing protein synthesis and reduces oTau-induced neurodegeneration. Levels of m6A and the m6A-oTau-HNRNPA2B1 complex are increased up to 5-fold in the brains of Alzheimer subjects and P301S tau mice. These results reveal a complex containing oTau, HNRNPA2B1, and m6A that contributes to the integrated stress response of oTau.

... read more

Topics: Tau protein (60%), Tauopathy (55%), Stress granule (53%) ... read more

2 Citations


Open accessJournal ArticleDOI: 10.1093/BRAIN/AWAB201
Terouz Pasha1, Anna Zatorska1, Daulet Sharipov1, Boris Rogelj2  +4 moreInstitutions (4)
21 May 2021-Brain
Abstract: Neurodegenerative proteinopathies are characterised by progressive cell loss that is preceded by the mislocalisation and aberrant accumulation of proteins prone to aggregation. Despite their different physiological functions, disease-related proteins like tau, alpha-synuclein, Tar DNA binding protein-43, Fused in sarcoma and mutant Huntingtin, all share low complexity regions that can mediate their liquid-liquid phase transitions. The proteins' phase transitions can range from native monomers to soluble oligomers, liquid droplets and further to irreversible, often-mislocalised aggregates that characterise the stages and severity of neurodegenerative diseases. Recent advances into the underlying pathogenic mechanisms have associated mislocalisation and aberrant accumulation of disease-related proteins with defective nucleocytoplasmic transport and its mediators called karyopherins. These studies identify karyopherin abnormalities in amyotrophic lateral sclerosis, frontotemporal dementia, Alzheimer's disease, and synucleinopathies including Parkinson's disease and dementia with Lewy bodies, that range from altered expression levels to the subcellular mislocalisation and aggregation of karyopherin alpha and beta proteins. The reported findings reveal that in addition to their classical function in nuclear import and export, karyopherins can also act as chaperones by shielding aggregation-prone proteins against misfolding, accumulation and irreversible phase-transition into insoluble aggregates. Karyopherin abnormalities can, therefore, be both the cause and consequence of protein mislocalisation and aggregate formation in degenerative proteinopathies. The resulting vicious feedback cycle of karyopherin pathology and proteinopathy identifies karyopherin abnormalities as a common denominator of onset and progression of neurodegenerative disease. Pharmacological targeting of karyopherins, already in clinical trials as therapeutic intervention targeting cancers such as glioblastoma and viral infections like COVID-19, may therefore represent a promising new avenue for disease-modifying treatments in neurodegenerative proteinopathies.

... read more

Topics: Karyopherin (57%), Synucleinopathies (55%), Karyopherins (54%) ... read more

2 Citations


References
  More

71 results found


Open accessJournal ArticleDOI: 10.1093/NAR/GKG595
Michael Zuker1Institutions (1)
Abstract: The abbreviated name,‘mfold web server’,describes a number of closely related software applications available on the World Wide Web (WWW) for the prediction of the secondary structure of single stranded nucleic acids. The objective of this web server is to provide easy access to RNA and DNA folding and hybridization software to the scientific community at large. By making use of universally available web GUIs (Graphical User Interfaces),the server circumvents the problem of portability of this software. Detailed output,in the form of structure plots with or without reliability information,single strand frequency plots and ‘energy dot plots’, are available for the folding of single sequences. A variety of ‘bulk’ servers give less information,but in a shorter time and for up to hundreds of sequences at once. The portal for the mfold web server is http://www.bioinfo.rpi.edu/applications/ mfold. This URL will be referred to as ‘MFOLDROOT’.

... read more

Topics: Web server (61%), Server (53%), Software portability (51%)

11,636 Citations


Journal ArticleDOI: 10.1063/1.1723621
Abstract: A statistical mechanical treatment of high polymer solutions has been carried out on the basis of an idealized model, originally proposed by Meyer, which is analogous to the one ordinarily assumed in the derivation of the ``ideal'' solution laws for molecules of equal size. There is obtained for the entropy of mixing of n solvent and N linear polymer molecules (originally disoriented), ΔS=−k[(n/β) ln v1+N ln v2] where v1 and v2 are volume fractions and β is the number of solvent molecules replaceable by a freely orienting segment of the polymer chain. This expression is similar in form to the classical expression for equal‐sized molecules, mole fractions having been replaced by volume fractions. When the disparity between the sizes of the two components is great, this expression gives entropies differing widely from the classical values, which accounts for the large deviations of high polymer solutions from ``ideal'' behavior. The entropy of disorientation of a perfectly arranged linear polymer is found t...

... read more

3,225 Citations


Journal ArticleDOI: 10.1006/JMBI.1999.3110
Peter E. Wright1, H. Jane Dyson1Institutions (1)
Abstract: A major challenge in the post-genome era will be determination of the functions of the encoded protein sequences. Since it is generally assumed that the function of a protein is closely linked to its three-dimensional structure, prediction or experimental determination of the library of protein structures is a matter of high priority. However, a large proportion of gene sequences appear to code not for folded, globular proteins, but for long stretches of amino acids that are likely to be either unfolded in solution or adopt non-globular structures of unknown conformation. Characterization of the conformational propensities and function of the non-globular protein sequences represents a major challenge. The high proportion of these sequences in the genomes of all organisms studied to date argues for important, as yet unknown functions, since there could be no other reason for their persistence throughout evolution. Clearly the assumption that a folded three-dimensional structure is necessary for function needs to be re-examined. Although the functions of many proteins are directly related to their three-dimensional structures, numerous proteins that lack intrinsic globular structure under physiological conditions have now been recognized. Such proteins are frequently involved in some of the most important regulatory functions in the cell, and the lack of intrinsic structure in many cases is relieved when the protein binds to its target molecule. The intrinsic lack of structure can confer functional advantages on a protein, including the ability to bind to several different targets. It also allows precise control over the thermodynamics of the binding process and provides a simple mechanism for inducibility by phosphorylation or through interaction with other components of the cellular machinery. Numerous examples of domains that are unstructured in solution but which become structured upon binding to the target have been noted in the areas of cell cycle control and both transcriptional and translational regulation, and unstructured domains are present in proteins that are targeted for rapid destruction. Since such proteins participate in critical cellular control mechanisms, it appears likely that their rapid turnover, aided by their unstructured nature in the unbound state, provides a level of control that allows rapid and accurate responses of the cell to changing environmental conditions.

... read more

2,628 Citations


Journal ArticleDOI: 10.1016/S0968-0004(01)01938-7
R. John Ellis1Institutions (1)
Abstract: Biological macromolecules evolve and function within intracellular environments that are crowded with other macromolecules. Crowding results in surprisingly large quantitative effects on both the rates and the equilibria of interactions involving macromolecules, but such interactions are commonly studied outside the cell in uncrowded buffers. The addition of high concentrations of natural and synthetic macromolecules to such buffers enables crowding to be mimicked in vitro, and should be encouraged as a routine variable to study. The stimulation of protein aggregation by crowding might account for the existence of molecular chaperones that combat this effect. Positive results of crowding include enhancing the collapse of polypeptide chains into functional proteins, the assembly of oligomeric structures and the efficiency of action of some molecular chaperones and metabolic pathways.

... read more

1,937 Citations


Open accessJournal ArticleDOI: 10.1126/SCIENCE.1113694
15 Jul 2005-Science
Abstract: Neurofibrillary tangles (NFTs) are the most common intraneuronal inclusion in the brains of patients with neurodegenerative diseases and have been implicated in mediating neuronal death and cognitive deficits Here, we found that mice expressing a repressible human tau variant developed progressive age-related NFTs, neuronal loss, and behavioral impairments After the suppression of transgenic tau, memory function recovered, and neuron numbers stabilized, but to our surprise, NFTs continued to accumulate Thus, NFTs are not sufficient to cause cognitive decline or neuronal death in this model of tauopathy

... read more

Topics: Neurofibrillary tangle (55%), Cognitive decline (54%), Tauopathy (54%) ... read more

1,603 Citations


Performance
Metrics
No. of citations received by the Paper in previous years
YearCitations
20219