scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Tilted fiber Bragg grating sensors

01 Jan 2013-Laser & Photonics Reviews (John Wiley & Sons, Ltd)-Vol. 7, Iss: 1, pp 83-108
TL;DR: In this paper, a tilt of the grating fringes causes coupling of the optical power from the core mode into a multitude of cladding modes, each with its own wavevector and mode field shape.
Abstract: Optical fiber gratings have developed into a mature technology with a wide range of applications in various areas, including physical sensing for temperature, strain, acoustic waves and pressure. All of these applications rely on the perturbation of the period or refractive index of a grating inscribed in the fiber core as a transducing mechanism between a quantity to be measured and the optical spectral response of the fiber grating. This paper presents a relatively recent variant of the fiber grating concept, whereby a small tilt of the grating fringes causes coupling of the optical power from the core mode into a multitude of cladding modes, each with its own wavevector and mode field shape. The main consequence of doing so is that the differential response of the modes can then be used to multiply the sensing modalities available for a single fiber grating and also to increase the sensor resolution by taking advantage of the large amount of data available. In particular, the temperature cross-sensitivity and power source fluctuation noise inherent in all fiber grating designs can be completely eliminated by referencing all the spectral measurements to the wavelength and power level of the core mode back-reflection. The mode resonances have a quality factor of 105, and they can be observed in reflection or transmission. A thorough review of experimental and theoretical results will show that tilted fiber Bragg gratings can be used for high resolution refractometry, surface plasmon resonance applications, and multiparameter physical sensing (strain, vibration, curvature, and temperature).
Citations
More filters
Journal ArticleDOI
TL;DR: The generation of polymer brushes by surface-initiated controlled radical polymerization (SI-CRP) techniques has become a powerful approach to tailor the chemical and physical properties of interfaces and has given rise to great advances in surface and interface engineering as mentioned in this paper.
Abstract: The generation of polymer brushes by surface-initiated controlled radical polymerization (SI-CRP) techniques has become a powerful approach to tailor the chemical and physical properties of interfaces and has given rise to great advances in surface and interface engineering. Polymer brushes are defined as thin polymer films in which the individual polymer chains are tethered by one chain end to a solid interface. Significant advances have been made over the past years in the field of polymer brushes. This includes novel developments in SI-CRP, as well as the emergence of novel applications such as catalysis, electronics, nanomaterial synthesis and biosensing. Additionally, polymer brushes prepared via SI-CRP have been utilized to modify the surface of novel substrates such as natural fibers, polymer nanofibers, mesoporous materials, graphene, viruses and protein nanoparticles. The last years have also seen exciting advances in the chemical and physical characterization of polymer brushes, as well as an ev...

681 citations

Journal ArticleDOI
TL;DR: An overview of the technologies used to implement surface plasmon resonance (SPR) effects into fiber-optic sensors for chemical and biochemical applications and a survey of results reported over the last ten years is presented.
Abstract: This paper presents a brief overview of the technologies used to implement surface plasmon resonance (SPR) effects into fiber-optic sensors for chemical and biochemical applications and a survey of results reported over the last ten years. The performance indicators that are relevant for such systems, such as refractometric sensitivity, operating wavelength, and figure of merit (FOM), are discussed and listed in table form. A list of experimental results with reported limits of detection (LOD) for proteins, toxins, viruses, DNA, bacteria, glucose, and various chemicals is also provided for the same time period. Configurations discussed include fiber-optic analogues of the Kretschmann–Raether prism SPR platforms, made from geometry-modified multimode and single-mode optical fibers (unclad, side-polished, tapered, and U-shaped), long period fiber gratings (LPFG), tilted fiber Bragg gratings (TFBG), and specialty fibers (plastic or polymer, microstructured, and photonic crystal fibers). Configurations involving the excitation of surface plasmon polaritons (SPP) on continuous thin metal layers as well as those involving localized SPR (LSPR) phenomena in nanoparticle metal coatings of gold, silver, and other metals at visible and near-infrared wavelengths are described and compared quantitatively.

555 citations

Journal ArticleDOI
23 Apr 2014-Sensors
TL;DR: The main challenges arising from the use of FBGs in composite materials are reviewed, with a focus on issues related to temperature-strain discrimination, demodulation of the amplitude spectrum during and after the curing process as well as connection between the embedded optical fibers and the surroundings.
Abstract: Nowadays, smart composite materials embed miniaturized sensors for structural health monitoring (SHM) in order to mitigate the risk of failure due to an overload or to unwanted inhomogeneity resulting from the fabrication process. Optical fiber sensors, and more particularly fiber Bragg grating (FBG) sensors, outperform traditional sensor technologies, as they are lightweight, small in size and offer convenient multiplexing capabilities with remote operation. They have thus been extensively associated to composite materials to study their behavior for further SHM purposes. This paper reviews the main challenges arising from the use of FBGs in composite materials. The focus will be made on issues related to temperature-strain discrimination, demodulation of the amplitude spectrum during and after the curing process as well as connection between the embedded optical fibers and the surroundings. The main strategies developed in each of these three topics will be summarized and compared, demonstrating the large progress that has been made in this field in the past few years.

380 citations


Cites background from "Tilted fiber Bragg grating sensors"

  • ...As detailed in [29,38,39], tilted FBGs present a refractive index modulation slightly angled with respect to the perpendicular to the optical fiber axis, which couples light in the core and in the cladding....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors focus on optical refractive index (RI) sensors with no fluorescent labeling required, and utilize two parameters to characterize and compare the performance of optical RI sensors: sensitivity to RI change (denoted by symbol SRI) and figure of merit (in short, FoM).
Abstract: DOI: 10.1002/adom.201801433 Scientific American selects plasmonic sensing as the top 10 emerging technologies of 2018.[15] Almost every single new plasmonic or photonic structure would be explored to test its sensing ability.[16–29] These works tend to report the sensing performance of their own structure. Some declare that their sensitivity breaks the world record. However, there is still a missing literature on what the world record really is, the gap between the experiments and the theoretical limit, as well as the differences between metal-based plasmonic sensors and dielectric-based photonic sensors. To push plasmonic and photonic sensors into industrial applications, an optical sensing technology map is absolutely necessary. This review aims to cover a wide range of most representative plasmonic and photonic sensors, and place them into a single map. The sensor performances of different structures will be distinctly illustrated. Future researchers could plot the sensing ability of their new sensors into this technology map and gauge their performances in this field. In this review, we focus on optical refractive index (RI) sensors with no fluorescent labeling required. We will utilize two parameters to characterize and compare the performance of optical RI sensors: sensitivity to RI change (denoted by symbol SRI) and figure of merit (in short, FoM). For simplicity, we restrict our discussions to bulk RI change, where the change in RI occurs within the whole sample. There is another case where the RI variation occurs only within a very small volume close to the sensor surface. This surface RI sensitivity is proportional to the bulk RI sensitivity, the ratio of the thickness of the layer within which the surface RI variation occurs, and the penetration depth of the optical mode.[6] The bulk RI sensitivity defines the ratio of the change in sensor output (e.g., resonance angle, intensity, or resonant wavelength) to the bulk RI variations. Here, we limit our discussions to the spectral interrogations and the bulk RI sensitivity SRI is given by[3,5–7,30]

259 citations

Journal ArticleDOI
TL;DR: In this article, the authors review the recent development in OFG-based biosensing and identify some of the key challenges for practical applications, while there are still open questions pertaining to an effective and reliable detection of small molecules, possibly up to single molecule, sensing in vivo and multi-target detection using OFGbased technology platforms.
Abstract: Abstract Optical fiber gratings (OFGs), especially long-period gratings (LPGs) and etched or tilted fiber Bragg gratings (FBGs), are playing an increasing role in the chemical and biochemical sensing based on the measurement of a surface refractive index (RI) change through a label-free configuration. In these devices, the electric field evanescent wave at the fiber/surrounding medium interface changes its optical properties (i.e. intensity and wavelength) as a result of the RI variation due to the interaction between a biological recognition layer deposited over the fiber and the analyte under investigation. The use of OFG-based technology platforms takes the advantages of optical fiber peculiarities, which are hardly offered by the other sensing systems, such as compactness, lightness, high compatibility with optoelectronic devices (both sources and detectors), and multiplexing and remote measurement capability as the signal is spectrally modulated. During the last decade, the growing request in practical applications pushed the technology behind the OFG-based sensors over its limits by means of the deposition of thin film overlays, nanocoatings, and nanostructures, in general. Here, we review efforts toward utilizing these nanomaterials as coatings for high-performance and low-detection limit devices. Moreover, we review the recent development in OFG-based biosensing and identify some of the key challenges for practical applications. While high-performance metrics are starting to be achieved experimentally, there are still open questions pertaining to an effective and reliable detection of small molecules, possibly up to single molecule, sensing in vivo and multi-target detection using OFG-based technology platforms.

225 citations


Cites background or methods from "Tilted fiber Bragg grating sensors"

  • ...Typical tilt angles range between 4° and 16° [10]....

    [...]

  • ...For TFBGs, the Bragg condition given in equation (1) is slightly modified in order to take into account the resonance wavelength of each m-th cladding mode TFBG res ( ) m λ [10]:...

    [...]

  • ...According to Figure 2, the typical grating lengths of LPGs and FBGs (TFBGs and EFBGs) are 10–40 mm [4] and 10–20 mm [10], respectively, depending on the used manufacturing technique....

    [...]

  • ...This structure allows the coupling to circularly and non-circularly symmetric co-propagating or counter propagating cladding modes, with the direction of the coupled light depending on the tilted angle of the TFBG [10]....

    [...]

References
More filters
Book ChapterDOI

[...]

01 Jan 2012

139,059 citations

Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations


"Tilted fiber Bragg grating sensors" refers background in this paper

  • ...Of particular interest are TFBGs with “excessive” tilt angles (45 degrees and larger, up to 80 degrees [43, 132]), a research area largely developed by the Photonics Research Group at Aston University in the UK: these gratings can also be used to couple to forward propagating cladding modes [90, 133], to detect refractive index changes [52,53,58,62], but they are mostly used for broadband polarization selection in fibers [110, 111, 117, 118, 121, 124, 134], and for coupling the light out of the fibers [23, 65, 66, 85, 86, 106, 112]....

    [...]

Journal ArticleDOI
TL;DR: This work presents a meta-analysis of the literature on food quality and safety analysis and its applications in the context of veterinary drugs and drugs and drug-Induced Antibodies, which focuses on the role of canine coronavirus in the veterinary industry.
Abstract: 5.1. Detection Formats 475 5.2. Food Quality and Safety Analysis 477 5.2.1. Pathogens 477 5.2.2. Toxins 479 5.2.3. Veterinary Drugs 479 5.2.4. Vitamins 480 5.2.5. Hormones 480 5.2.6. Diagnostic Antibodies 480 5.2.7. Allergens 481 5.2.8. Proteins 481 5.2.9. Chemical Contaminants 481 5.3. Medical Diagnostics 481 5.3.1. Cancer Markers 481 5.3.2. Antibodies against Viral Pathogens 482 5.3.3. Drugs and Drug-Induced Antibodies 483 5.3.4. Hormones 483 5.3.5. Allergy Markers 483 5.3.6. Heart Attack Markers 484 5.3.7. Other Molecular Biomarkers 484 5.4. Environmental Monitoring 484 5.4.1. Pesticides 484 5.4.2. 2,4,6-Trinitrotoluene (TNT) 485 5.4.3. Aromatic Hydrocarbons 485 5.4.4. Heavy Metals 485 5.4.5. Phenols 485 5.4.6. Polychlorinated Biphenyls 487 5.4.7. Dioxins 487 5.5. Summary 488 6. Conclusions 489 7. Abbreviations 489 8. Acknowledgment 489 9. References 489

3,698 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review the recent developments in the area of optical fiber grating sensors, including quasi-distributed strain sensing using Bragg gratings, systems based on chirped gratings and intragrating sensing concepts.
Abstract: We review the recent developments in the area of optical fiber grating sensors, including quasi-distributed strain sensing using Bragg gratings, systems based on chirped gratings, intragrating sensing concepts, long period-based grating sensors, fiber grating laser-based systems, and interferometric sensor systems based on grating reflectors.

3,665 citations

Journal ArticleDOI
TL;DR: Fiber Bragg grating (FBG) technology has been extensively studied in the literature as mentioned in this paper, where the basic techniques for fiber grating fabrication, their characteristics, and the fundamental properties of fiber gratings are described.
Abstract: The historical beginnings of photosensitivity and fiber Bragg grating (FBG) technology are recounted. The basic techniques for fiber grating fabrication, their characteristics, and the fundamental properties of fiber gratings are described. The many applications of fiber grating technology are tabulated, and some selected applications are briefly described.

2,905 citations